
COMS30035, Machine learning:
PGMs for Bayesian Machine Learning

James Cussens
james.cussens@bristol.ac.uk

School of Computer Science
University of Bristol

25th September 2023

James Cussens
james.cussens@bristol.ac.uk

COMS30035: PGMs4BML 1/19

The Bayesian approach

▶ Conceptually the Bayesian approach is easy: the goal is to compute
the posterior distribution P(θ|D = d) where θ is the parameter vector
and d is the observed value of the data.

▶ We choose a prior P(θ) and assume a particular likelihood P(D|θ) and
then Bayes theorem gives us P(θ|D = d) ∝ P(θ)P(D = d |θ).

▶ If we choose a conjugate prior for P(θ), then representing and
computing P(θ|D = d) is easy.

James Cussens
james.cussens@bristol.ac.uk

COMS30035: PGMs4BML 2/19

Problems for the Bayesian approach

▶ “For most probabilistic models of practical interest, exact inference is
intractable, and so we have to resort to some form of approximation.”
[Bis06, p. 523].

▶ We want to be able to just construct whatever joint distribution P(θ,D)
we think best models the data-generating process and then compute
P(θ|D = d).

▶ However, with this flexibility there is a price: we may not even be able
to represent P(θ|D = d) easily, let alone compute it.

▶ The solution is to give up on getting P(θ|D = d) exactly and instead
draw samples (of θ) from P(θ|D = d) which will allow us to
approximately compute any posterior quantities, e.g. the mean of
P(θ|D = d).

James Cussens
james.cussens@bristol.ac.uk

COMS30035: PGMs4BML 3/19

Problems for the Bayesian approach

▶ “For most probabilistic models of practical interest, exact inference is
intractable, and so we have to resort to some form of approximation.”
[Bis06, p. 523].

▶ We want to be able to just construct whatever joint distribution P(θ,D)
we think best models the data-generating process and then compute
P(θ|D = d).

▶ However, with this flexibility there is a price: we may not even be able
to represent P(θ|D = d) easily, let alone compute it.

▶ The solution is to give up on getting P(θ|D = d) exactly and instead
draw samples (of θ) from P(θ|D = d) which will allow us to
approximately compute any posterior quantities, e.g. the mean of
P(θ|D = d).

James Cussens
james.cussens@bristol.ac.uk

COMS30035: PGMs4BML 3/19

Univariate sampling

▶ We will assume throughout that we have some mechanism for
sampling from any univariate distribution.

▶ There are functions for sampling from a bunch of different distributions
in Python’s random module. Also, to sample from a Gaussian you can
use numpy.random.normal.

▶ If a multivariate distribution is described by a Bayesian network then
we can use ancestral sampling to sample a joint instantiation of the
variables.

James Cussens
james.cussens@bristol.ac.uk

COMS30035: PGMs4BML 4/19

https://docs.python.org/3/library/random.html

Ancestral sampling

p(A,B,C,D,E) = p(A)p(B)p(C|A,B)p(D|C)p(E |B,C)

A B

C

D E

▶ Just ensure that we sample values for all parents of a node before we
sample a value for that node (this is always possible due to acyclicity).

▶ So to sample from p(A,B,C,D,E) we first sample values for A and B,
suppose we get the values A = 0,B = 1. We then sample a value for
C from the conditional distribution P(C|A = 0,B = 1), and so on.
[Bis06, §8.1.2].

James Cussens
james.cussens@bristol.ac.uk

COMS30035: PGMs4BML 5/19

Sampling from marginal and conditional distributions

p(A,B,C,D,E) = p(A)p(B)p(C|A,B)p(D|C)p(E |B,C)

▶ We can approximate any marginal distribution (say, P(B,E)) by
sampling full joint instantiations (by e.g. ancestral sampling) and then
only keeping the values of the variables in the marginal.

▶ We can use rejection sampling to sample from conditional
distributions.

▶ For example, to sample from P(B,D|E = 1) we sample from the
marginal distribution P(B,D,E) and throw away those samples where
E ̸= 1.

▶ Rejection sampling is typically inefficient.

James Cussens
james.cussens@bristol.ac.uk

COMS30035: PGMs4BML 6/19

Approximating expectations

▶ Often we want to compute expected values with respect to some
posterior distribution [Bis06, p. 524].

E [f] =
∫

f (z)p(z)dz (1)

▶ If we draw independent samples z(l), l = 1, . . . ,L from p(z) then we
can approximate E [f] as follows:

f̂ =
1
L

L∑
l=1

f (z(l)) (2)

James Cussens
james.cussens@bristol.ac.uk

COMS30035: PGMs4BML 7/19

Markov chain Monte Carlo

▶ If we can sample from a distribution then we have a simple way to
compute approximate values. But what if we cannot?

▶ If we can sample from a sequence of distributions which eventually
reaches (or gets very close to) the desired distribution, then we can
adopt the following strategy:

1. Draw a sample from each distribution in this sequence.
2. Only keep the samples once we get ‘close enough’ to the desired

distribution.
▶ This is the approach of Markov chain Monte Carlo (MCMC).

James Cussens
james.cussens@bristol.ac.uk

COMS30035: PGMs4BML 8/19

Markov chain Monte Carlo

▶ If we can sample from a distribution then we have a simple way to
compute approximate values. But what if we cannot?

▶ If we can sample from a sequence of distributions which eventually
reaches (or gets very close to) the desired distribution, then we can
adopt the following strategy:

1. Draw a sample from each distribution in this sequence.
2. Only keep the samples once we get ‘close enough’ to the desired

distribution.
▶ This is the approach of Markov chain Monte Carlo (MCMC).

James Cussens
james.cussens@bristol.ac.uk

COMS30035: PGMs4BML 8/19

Markov chains
“A first-order Markov chain is defined to be a series of random variables
z(1), . . . , z(M) such that the following conditional independence property
holds for m ∈ {1, . . . ,M − 1}” [Bis06, p. 539].

p(z(m+1)|z(1), ..., z(m)) = p(z(m+1)|z(m)) (3)

▶ z(m) often represents (or can be imagined to represent) the mth state
of some dynamic system so that p(z(m+1)|z(m)) is a state transition
probability.

▶ If p(z(m+1)|z(m)) is the same for all m then the chain is homogeneous.
▶ (We also need an initial distribution p(z(1)).)
▶ Here’s the Bayesian network representation of a Markov chain where

M = 4.

x1 x2 x3 x4

▶ Sampling from a Markov chain is easy: it’s just a special case of
ancestral sampling.

James Cussens
james.cussens@bristol.ac.uk

COMS30035: PGMs4BML 9/19

Markov chain Monte Carlo

x1 x2 x3 x4

▶ A Markov chain defines a sequence of marginal distributions; for the
BN above these are P(x1), P(x2), P(x3) and P(x4).

▶ The goal of MCMC is to design a Markov chain so that this sequence
of marginal distributions converges on the distribution we want.

▶ Then we can just sample from the Markov chain and only keep the
sampled values of the ‘later’ random variables.

▶ The sampled values we draw are not independent, but this is a price
we have to pay.

James Cussens
james.cussens@bristol.ac.uk

COMS30035: PGMs4BML 10/19

How to get MCMC to work?

▶ We have a clear goal: given a target probability distribution p(z),
construct a Markov chain z(1), . . . , z(i) . . . such that
limi→∞ p(z(i)) = p(z).

▶ (For Bayesian machine learning the target distribution will be
P(θ|D = d), the posterior distribution of the model parameters given
the observed data.)

▶ One solution to this is the Metropolis-Hastings algorithm.

James Cussens
james.cussens@bristol.ac.uk

COMS30035: PGMs4BML 11/19

The Metropolis-Hastings (MH) algorithm

▶ We define a single transition probability distribution for a
homogeneous Markov chain.

▶ Let the current state be z(τ). When using the MH algorithm sampling
the next state happens in two stages:

1. We generate a value z∗ by sampling from a proposal distribution
q(z|z(τ)).

2. We then accept z∗ as the new state with a certain acceptance
probability. If we don’t accept z∗ then we ‘stay where we are’, so that z(τ)

is both the old and new state.

James Cussens
james.cussens@bristol.ac.uk

COMS30035: PGMs4BML 12/19

The Metropolis-Hastings acceptance probability

Let p(z) be the target distribution. The acceptance probability is: [Bis06, p.
541].

A(z∗, z(τ)) = min

(
1,

p(z∗)q(z(τ)|z∗)
p(z(τ))q(z∗|z(τ))

)
(4)

▶ If p(z) = p̃(z)/Z then we have p(z∗)/p(z(τ)) = p̃(z∗)/p̃(z(τ)), so we
only need p up to normalisation. This is a big win!

▶ If the proposal distribution is symmetric then the ‘q’ terms cancel out:
a special case known as the Metropolis algorithm.

▶ Note that for the Metropolis algorithm if p(z∗) ≥ p(z(τ)) then we
always accept and ‘move’ to z∗.

James Cussens
james.cussens@bristol.ac.uk

COMS30035: PGMs4BML 13/19

Does Metropolis-Hastings (always) work?

.
▶ It can be shown [Bis06, p. 541] that the target distribution is an

invariant distribution of the Markov chain: if the sequence of
distributions p(z(i)) reaches the target distribution then it stays there.

▶ Also, typically the Markov chain does converge to the target
distribution.

▶ The rate at which we converge to the target distribution is greatly
influenced by the choice of proposal distribution.

James Cussens
james.cussens@bristol.ac.uk

COMS30035: PGMs4BML 14/19

MCMC in practice

▶ Straightforward Metropolis-Hastings is not the state-of-the-art in
MCMC.

▶ Probabilistic programming systems like PyMC by default use more
sophisticated MCMC algorithms (to avoid getting stuck).

▶ From the PyMC intro overview: “Probabilistic programming (PP)
allows flexible specification of Bayesian statistical models in code.
PyMC is a PP framework with an intuitive and readable, yet powerful,
syntax that is close to the natural syntax statisticians use to describe
models. It features next-generation Markov chain Monte Carlo
(MCMC) sampling algorithms such as the No-U-Turn Sampler”

▶ When using MCMC we (1) throw away early samples (‘burn-in’) and
(2) ‘run independent chains’ to check for convergence.

▶ PyMC uses R̂ (r_hat) to check for convergence; this value should be
close to 1.

James Cussens
james.cussens@bristol.ac.uk

COMS30035: PGMs4BML 15/19

https://www.pymc.io/projects/docs/en/latest/learn/core_notebooks/pymc_overview.html

Let’s do some Bayesian machine learning with PyMC!

▶ I’ve found the easiest way to get the introductory Jupyter notebooks
mentioned in the PyMC website is to clone the PyMC github repo.

▶ You can then find them in
pymc/docs/source/learn/core_notebooks

James Cussens
james.cussens@bristol.ac.uk

COMS30035: PGMs4BML 16/19

Christopher M. Bishop.
Pattern Recognition and Machine Learning.
Springer, 2006.

James Cussens
james.cussens@bristol.ac.uk

COMS30035: PGMs4BML 16/19

