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The chain rule

▶ For any joint distribution P(x1, . . . , xn) we have:

P(x1, . . . , xn) = P(x1)P(x2|x1) . . .P(xn|x1, . . . xn−1) (1)

▶ This just follows from the definition of conditional probability.
▶ Note that we can re-order the the variables at will e.g.

P(x1, . . . , xn) = P(x2)P(x1|x2) . . .P(xn|x1, . . . xn−1)
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Conditional independence

▶ For any joint distribution over random variables x1, x2, x3 we always
have:

P(x1, x2, x3) = P(x1)P(x2|x1)P(x3|x1, x2) (2)

▶ Now suppose that for some particular probability distribution P we
have that: P(x3|x1, x2) = P(x3|x2).

▶ In other words for the distribution P, x3 is independent of x1
conditional on x2.

▶ Intuition: Once I know the value of x2 (no matter what that value might
be) then knowing x1 provides no information about x3.

▶ Then P(x1, x2, x3) = P(x1)P(x2|x1)P(x3|x2)

▶ Probabilistic graphical models (PGMs) provide a graphical
representation of how a joint distribution factorises when there are
conditional independence relations.
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Bayesian networks

▶ The most commonly used PGM is the Bayesian network.
▶ If we have P(x1, x2, x3) = P(x1)P(x2|x1)P(x3|x2)

▶ Then this factorisation of the joint distribution is represented by the
following directed acyclic graph (DAG):

x1 x2 x3

For a distribution with no conditional independence relations a suitable BN
representation would be:

x1 x2 x3
P(x1, x2, x3) = P(x1)P(x2|x1)P(x3|x1, x2)

or

x3 x2 x1
P(x1, x2, x3) = P(x3)P(x2|x3)P(x1|x2, x3)
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Bayesian network terminology

▶ If there is an arrow from A to B in a Bayesian network we say that A is
a parent of B and B is a child of A.

▶ The set of parents of a node xk is denoted (by Bishop) like this: pak .
▶ Note that any directed acyclic graph (DAG) determines pak for each

node xk in that DAG (and conversely the collection of parent sets
determine the DAG).

▶ A Bayesian network with parent sets pak for random variables
x1, . . . , xK represents a joint distribution which factorises as follows:

p(x) =
K∏

k=1

p(xk |pak ) (3)
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BN structure and parameters

▶ For a BN to represent a given joint distribution we need to specify:
1. the DAG (the structure of the BN)
2. the conditional probability distributions p(xk |pak ) (the parameters of the

BN)
▶ A given DAG represents a set of joint distributions: each distribution in

the set corresponds to a choice of values for the conditional
distributions p(xk |pak ).

▶ We will see that it is possible to ‘read off’ conditional independence
relations that are true for a distribution represented by a BN, just by
using the DAG.
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BNs represent machine learning models

▶ We will use BNs to represent machine learning models.
▶ Later we will see how to use such a representation to ‘automatically’

do Bayesian machine learning.
▶ Let’s start with a BN to represent Bayesian polynomial regression

[Bis06, §8.1.1].
▶ In a Bayesian approach we have to define a prior probability

distribution over parameters which (is supposed to) represent our
beliefs about their values prior to observing the data.
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Polynomial regression model
To begin with let’s just focus on the joint distribution p(t,w) where w is the
vector of polynomial coefficients and t is the observed (output) data.

p(t,w) can be factorised as follows (since we assume the data is i.i.d.)

p(t,w) = p(w)
N∏

n=1

p(tn|w) (4)

and so has the corresponding BN:

w

. . .t1 tN

where the dots represent the tn that have not been explicitly represented in
the BN. I have shaded the t1 and tn nodes to indicate that the values of
these random variables are observed (since they are data).
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Plate notation

▶ Using dots to represent BN nodes we don’t wish to explicitly represent
is a bit yucky.

▶ Instead we use plate notation to represent BNs with many nodes:

tn w

N

▶ The plate around tn represents a set of nodes t1, . . . , tN all of which
have w as their (single) parent.

▶ Bishop [Bis06, Fig 8.4] labels the plate with N (the number of nodes
‘in’ the plate). Other authors label plates with an index (here it would
be n). We will stick with Bishop’s notation to be consistent with the
textbook.
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A fuller description

The full Bayesian polynomial regression model contains:
1. The input data x = (x1, . . . , xN)

T

2. The observed ouputs t = (t1, . . . , tN)T

3. The parameter vector w.
4. A hyperparameter α.
5. The noise variance σ2.

▶ We don’t care how x is distributed and we would probably just set α to
some value.

▶ So we would typically consider x, α and also σ2 as parameters of the
model rather than random variables.

▶ But it is also useful represent these quantities in the BN.
▶ This leads us to more notation for BNs
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A complete BN representation for the polynomial
regression model

tn w

α
xn

σ2

N
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Using BNs to represent ML models

▶ Machine learning research papers frequently use Bayesian networks
to graphically represent machine learning models.

▶ They represent the data-generating process.
▶ Here’s an example from NeurIPS 2019 [BS19].
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Differentially private Bayesian linear regression
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Another example

▶ An example from a paper on ‘causal representation learning’
[LML+23]

Ct−1
1 Ct−1

2
· · · Ct−1

K

Xt−1

Ct1 Ct2 · · · CtK

Xt

It1 It2 · · · ItK

Rt

It−1
1 It−1

2
· · · It−1

K

Rt−1

· · ·

· · ·

· · ·

· · ·

Temporal causal
relations

Interactions

Observations

Regimes

Causal variables

Figure 2: A representation of our assumptions. Observed variables are shown in gray (Xτ and Rτ ) and latent variables in
white. Optional causal edges are shown as dashed lines. A latent causal variableCti has as parents a subset of the causal factors
at the previous time step Ct−1 = {Ct−1

1 , . . . , Ct−1
K }, and its latent binary interaction variable Iti . The interaction variables

are determined by an observed regime variable Rt and potentially by the variables from the previous time step Ct−1 (e.g., in
a collision). The regime variable can be a dynamical process over time as well, for example, by depending on the previous
time step. The observation Xτ is a high-dimensional entangled representation of all causal variables Cτ at time step τ .

In this setup, we prove that causal variables are identifi-
able if the agent interacts with each causal variable in a
distinct pattern, i.e., does not always interact with any two
causal variables at the same time. We show that for K vari-
ables, we can in many cases fulfill this by having as few as
blog2Kc+ 2 actions with sufficiently diverse effects, allow-
ing identifiability even for a limited number of actions. The
binary nature of the interactions permits the identification
of a wider class of causal models than previous work in a
similar setup, including the common, challenging additive
Gaussian noise model (Hyvärinen et al., 1999).

Based on these theoretical results, we propose BISCUIT
(Binary Interactions for Causal Identifiability). BISCUIT is
a variational autoencoder (Kingma et al., 2014) which learns
the causal variables and the agent’s binary interactions with
them in an unsupervised manner (see Figure 1). In experi-
ments on robotic-inspired datasets, BISCUIT identifies the
causal variables and outperforms previous methods. Fur-
thermore, we apply BISCUIT to the realistic 3D embodied
AI environment iTHOR (Kolve et al., 2017), and show that
BISCUIT is able to generate realistic renderings of unseen
causal states in a controlled manner. This highlights the po-
tential of causal representation learning in the challenging
task of embodied AI. In summary, our contributions are:

• We show that under mild assumptions, binary inter-
actions with unknown targets identify the causal vari-
ables from high-dimensional observations over time.

• We propose BISCUIT, a causal representation learning
framework that learns the causal variables and their
binary interactions simultaneously.

• We empirically show that BISCUIT identifies both the
causal variables and the interaction targets on three
robotic-inspired causal representation learning bench-
marks, and allows for controllable generations.

2 PRELIMINARIES

In this paper, we consider a causal modelM as visualized
in Figure 2. The modelM consists of K latent causal vari-
ables C1, ..., CK which interact with each other over time,
like in a dynamic Bayesian Network (DBN) (Dean et al.,
1989; Murphy, 2002). In other words, at each time step t, we
instantiate the causal variables as Ct = {Ct1, ..., CtK} ∈ C,
where C ⊆ RK is the domain. In terms of the causal graph,
each variable Cti may be caused by a subset of variables in
the previous time step {Ct−1

1 , ..., Ct−1
K }. For simplicity, we

restrict the temporal causal graph to only model dependen-
cies on the previous time step. Yet, as we show in Appendix
B.3, our results in this paper can be trivially extended to
longer dependencies, e.g., (Ct−2, Ct−1)→ Ct, since Ct−1

is only used for ensuring conditional independence. As in
DBNs, we consider the graph structure to be time-invariant.

Besides the intra-variable dynamics, we assume that the
causal system is affected by a regime variable Rt with arbi-
trary domainR, which can be continuous or discrete of ar-
bitrary dimensionality. This regime variable can model any
known external causes on the system, which, for instance,
could be a robotic arm interacting with an environment. For
the causal graph, we assume that the effect of the regime
variable Rt on a causal variable Cti can be described by
a latent binary interaction variable Iti ∈ {0, 1}. This can
be interpreted as each causal variable having two mecha-
nisms/distributions, e.g., an observational and an interven-
tional mechanism, which has similarly been assumed in pre-
vious work (Brehmer et al., 2022; Lippe et al., 2022a, 2023).
Thereby, the role of the interaction variable Iti is to select the
mechanism, i.e., observational or interventional, at time step
t. For example, a collision between an agent and an object is
an interaction that switches the dynamics of the object from

1264
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Naive Bayes

▶ In a naive Bayes model for classification [Bis06, p. 380] the observed
variables x = (x1, . . . xD) are assumed independent conditional on the
class variable z:

P(x, z) = P(z)P(x|z) = P(z)
D∏

i=1

P(xi |z) (5)

▶ Let’s have a look at a naive Bayes model. [Mur23, p. 163].
▶ And a latent variable model [Mur23, p. 159].
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Hierarchical Linear Regression

Here’s a nice example of using Bayesian networks to represent different
approaches to a linear regression problem where there is extra ‘structure’.
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Standard regression (abbreviated)

P(θ, y) = P(θ)
k∏

i=1

P(yi |θ)
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Separate regressions (abbreviated)

P(θ, y) =
k∏

i=1

P(yi |θi)P(θi)
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Hierarchical regression (abbreviated)

P(θ, y , µ, σ2) = P(µ, σ2)
k∏

i=1

P(yi |θi)P(θi |µ, σ2)
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Conditional independence

▶ A random variable x is independent of another random variable y
conditional on a set of random variables S if and only if:

P(x , y |S) = P(x |S)P(y |S) (6)

Equivalently:
P(x |S) = P(x |y ,S) (7)

▶ The DAG for a BN encodes conditional independence relations.

▶ Some of the following slides are modified versions of those made
available by David Barber,

▶ who has written a great (freely available) book on Bayesian machine
learning [Bar12]
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Independence ⊥ in Bayesian Networks – Part I
All Bayesian networks with three nodes and two links:

A B

C

(a)

A ⊥ B |C

A B

C

(b)

A B

C

(c)

A��⊥B |C

A B

C

(d)

▶ In (a), (b) and (c), A and B are conditionally independent given C.

(a) p(A,B|C) = p(A,B,C)
p(C)

= p(A|C)p(B|C)p(C)
p(C)

= p(A|C)p(B|C)

(b) p(A,B|C) = p(A)p(C|A)p(B|C)
p(C)

= p(A,C)p(B|C)
p(C)

= p(A|C)p(B|C)

(c) p(A,B|C) = p(A|C)p(C|B)p(B)
p(C)

= p(A|C)p(B,C)
p(C)

= p(A|C)p(B|C)

▶ In (d) the variables A,B are conditionally dependent given C,
p(A,B|C) ∝ p(A,B,C) = p(C|A,B)p(A)p(B).
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Independence ⊥ in Bayesian Networks – Exercises

A B

C

(a)

A ⊥ B |C

A B

C

(b)

A B

C

(c)

A��⊥B |C

A B

C

(d)

▶ Show that in (d), we have A ⊥ B.
▶ For each of (a), (b) and (c), assume that each variable is binary, and

find parameters so that A�⊥B
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Paths and colliders

p(A,B,C,D,E) = p(A)p(B)p(C|A,B)p(D|C)p(E |B,C)

A B

C

D E

▶ A node is a collider on some path if both arrows point into it on that
path.

▶ C is a collider on the path (A,C,B) but is not a collider on the path
(A,C,E) or on any of the following paths: (A,C,E ,B), (D,C,B) or
(D,C,E).
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d-separation

▶ If all paths from node x to node y are blocked given nodes S then x
and y are d-separated by S.

▶ A path is blocked by S if at least one of the following is the case:
1. there is a collider on the path that is not in S and none of its descendants

are in S
2. there is a non-collider on the path that is in S.

▶ If x and y are d-separated by S then x ⊥ y |S for any probability
distribution which factorises according to the DAG.

▶ Let’s do some d-separation exercises.
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Checking for d-separation

A B

C

D E

A path is blocked by S if at least one of the following is the case:
1. there is a collider on the path that is not in S and none of its

descendants are in S
2. there is a non-collider on the path that is in S.
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Hierarchical regression revisited

P(θ, y , µ, σ2) = P(µ, σ2)
k∏

i=1

P(yi |θi)P(θi |µ, σ2)
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