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The chain rule

» For any joint distribution P(x, ..., x,) we have:

P(x1,....Xn) = P(x1)P(X2|x1) ... P(Xa| X1, ... Xp—1) (1)

» This just follows from the definition of conditional probability.

» Note that we can re-order the the variables at will e.g.
P(x1,...,Xn) = P(x2)P(x1|X2) ... P(Xn|X1, ... Xn—1)
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Conditional independence

» For any joint distribution over random variables x1, Xz, X3 we always
have:

P(x1, X2, X3) = P(x1)P(x2|X1) P(x3] X1, X2) (2)

» Now suppose that for some particular probability distribution P we
have that: P(x3|x1, X2) = P(X3|X2).

> In other words for the distribution P, x5 is independent of x4
conditional on x,.

» Intuition: Once | know the value of xo (no matter what that value might
be) then knowing x; provides no information about xs.

» Then P(X1 , X2, X3) = P(X1 )P(X2|X1 )P(X3|X2)

» Probabilistic graphical models (PGMs) provide a graphical
representation of how a joint distribution factorises when there are
conditional independence relations.
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Bayesian networks

» The most commonly used PGM is the Bayesian network.

> If we have P(x1, X2, X3) = P(x1)P(x2|x1)P(X3]X2)

» Then this factorisation of the joint distribution is represented by the
following directed acyclic graph (DAG):

For a distribution with no conditional independence relations a suitable BN
representation would be:

P(X1,X2,X3) = P(X1)P(X2|X1)P(X3|X1,X2)

P(x1, X2, X3) = P(x3) P(X2|X3) P(X1|X2, X3)
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Bayesian network terminology

» If there is an arrow from A to B in a Bayesian network we say that A is
a parent of B and B is a child of A.

> The set of parents of a node xi is denoted (by Bishop) like this: pa,.

> Note that any directed acyclic graph (DAG) determines pa, for each
node xi in that DAG (and conversely the collection of parent sets
determine the DAG).

»> A Bayesian network with parent sets pa, for random variables
X1, ..., Xk represents a joint distribution which factorises as follows:

K
p(x) = [ p(xkIpay) &)
k=1
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BN structure and parameters

» For a BN to represent a given joint distribution we need to specify:

1. the DAG (the structure of the BN)
2. the conditional probability distributions p(xk|pa,) (the parameters of the

BN)

»> A given DAG represents a set of joint distributions: each distribution in
the set corresponds to a choice of values for the conditional
distributions p(xx|pay)-

» We will see that it is possible to ‘read off’ conditional independence
relations that are true for a distribution represented by a BN, just by
using the DAG.




BNs represent machine learning models

» We will use BNs to represent machine learning models.

> Later we will see how to use such a representation to ‘automatically’
do Bayesian machine learning.

> Let’s start with a BN to represent Bayesian polynomial regression

_____

» In a Bayesian approach we have to define a prior probability
distribution over parameters which (is supposed to) represent our
beliefs about their values prior to observing the data.
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Polynomial regression model
To begin with let’s just focus on the joint distribution p(t, w) where w is the
vector of polynomial coefficients and t is the observed (output) data.

p(t,w) can be factorised as follows (since we assume the data is i.i.d.)

N
p(t,w) = p(w) [ p(ts|w) (4)
n=1

and so has the corresponding BN:

where the dots represent the t, that have not been explicitly represented in
the BN. | have shaded the t; and t, nodes to indicate that the values of
these random variables are observed (since they are data).
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Plate notation

» Using dots to represent BN nodes we don’t wish to explicitly represent
is a bit yucky.
> Instead we use plate notation to represent BNs with many nodes:

» The plate around f, represents a set of nodes ti, ..., ty all of which
have w as their (single) parent.

» Bishop [Bis06;, Fig 8.4] labels the plate with N (the number of nodes
‘in’ the plate). Other authors label plates with an index (here it would
be n). We will stick with Bishop’s notation to be consistent with the
textbook.
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A fuller description

The full Bayesian polynomial regression model contains:

1.

The input data x = (xy,...,xn)7

2. The observed ouputs t = (ti,...,ty)"

vV O b~ ®

. The parameter vector w.
. A hyperparameter a.

The noise variance o?2.
We don’t care how x is distributed and we would probably just set o to
some value.

So we would typically consider x, a and also o2 as parameters of the
model rather than random variables.

But it is also useful represent these quantities in the BN.
This leads us to more notation for BNs




A complete BN representation for the polynomial
regression model

S
{ ]
{ ]
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Using BNs to represent ML models

» Machine learning research papers frequently use Bayesian networks
to graphically represent machine learning models.

» They represent the data-generating process.
» Here’s'an example from NeurlPS 2019 [BS{9].
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https://papers.nips.cc/paper/8343-differentially-private-bayesian-linear-regression.pdf

Differentially private Bayesian linear regression

3.1 Privacy mechanism

Using the Laplace mechanism to release the noisy sufficient statistics z results
in the model shown in Figure [T. This is the same model used in non-private 6,0°
linear regression except for the introduction of z, which requires the exact
sufficient statistics s to have finite sensitivity. A standard assumption in @ _@
literature [Awan and Slavkovic| 20T8] [Sheffet, 2017 Wang| 2018] [Zhang|
is to assume x and y have known a priori lower and upper \C?

s

bounds, (ax. by ) and (a,, b, ). with bound widths w, = by — ay (assuming,
for simplicity, equal bounds for all covariate dimensions) and wy = b, —
ay, respectively. We can then reason about the worst case influence of an
individual on each component of s = [XTX, XTy.yTy], recalling that
s=3,t(x,yD), so that [Axr ), . Axy),. Aye| = [wg, wew,, w}]. | Figure 1: Private
The number of umque e]emem{lm sis [d(d +1)/2, d 1], 50 As = wid(d + | "CEression model.
1)/2 4 wyw,d + w?. The noisy sufficient statistics fit for public release are
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Another example

» An example from a paper on ‘causal representation learning’

[LMLT23]

Observations

Temporal causal
relations

Causal variables

Figure 2: A representation of our assumptions. Observed variables are shown in gray (X7 and R") and latent variables in
white. Optional causal edges are shown as dashed lines. A latent causal variable C! has as parents a subset of the causal factors
at the previous time step C*~1 = {C}~", ..., Ci- "}, and its latent binary interaction variable I}. The interaction variables
are determined by an observed regime variable R and potentially by the variables from the previous time step C*~! (e.g., in
a collision). The regime variable can be a dynamical process over time as well, for example, by depending on the previous

time step. The observation X7 is a high-di ional P ion of all causal variables C™ at time step 7.
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Naive Bayes

» In a naive Bayes model for classification [Bis06; p. 380] the observed
variables X = (xy, ... xp) are assumed independent conditional on the

class variable z:
D

P(x,2) = P(2)P(x|z) = P(2) [ ] P(xil2) (5)
i=1

» Let's have a look at a naive Bayes model. [Mur23, p. 163].
» And a latent variable model [Mur23, p. 159].
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Hierarchical Linear Regression

Here’s a nice example of using Bayesian networks to represent different
approaches to a linear regression problem where there is extra ‘structure’.
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https://www.pymc.io/projects/docs/en/v3.11.4/pymc-examples/examples/generalized_linear_models/GLM-hierarchical.html

Standard regression (abbreviated)

//\

observations J1 Yo

parameter

k
= PO) [T P(vil0)
i=1




Separate regressions (abbreviated)

parameters 9 1 9 2

|

observations Y 1 Y 2

P9, y) = HPy,|6 P(6))

i=1




Hierarchical rearession (abbreviated)
2
M, o

0, 65 .. 04

observations Y1 Yo Y

model

parameters

P(03y7p’302) - HP(yIWI 0|:u a )




Conditional independence

» A random variable x is independent of another random variable y
conditional on a set of random variables S if and only if:

P(x,y|S) = P(x|S)P(y|S) (6)

Equivalently:
P(x|S) = P(x|y,S) (7)

» The DAG for a BN encodes conditional independence relations.
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http://web4.cs.ucl.ac.uk/staff/D.Barber/textbook/090310.pdf

Conditional independence

» A random variable x is independent of another random variable y
conditional on a set of random variables S if and only if:

P(x,y|S) = P(x|S)P(y|S) (6)

Equivalently:
P(x|S) = P(x|y,S) (7)

» The DAG for a BN encodes conditional independence relations.

» Some of the following slides are modified versions of those made
available by David Barber,

» who has written a great (freely available) book on Bayesian machine
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http://web4.cs.ucl.ac.uk/staff/D.Barber/textbook/090310.pdf

Independence 1 in Bayesian Networks — Part |
All Bayesian networks with three nodes and two links:

AL B|C AXB|C

(a) () © (d)

> In (a), (b) and (c), A and B are conditionally independent given C.

(@) P(A.BIC) = “2{” = EUCHBORO) _ p(|C)p(B|C)

(b) P(A, BIC) = HAPGHRCIO) _ HAOBEIO) — p(4|C)p(B|C)
(©) P(A, BIC) = PAIGEEIEIE) _ pAIOHEL) _ b4 C)p(BIC)

» In (d) the variables A, B are conditionally dependent given C,
P(A, B|C) x p(A, B, C) = p(CI|A, B)p(A)p(B).
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Independence L in Bayesian Networks — Exercises

AL B|C AXB|C

(a) () (©) (d)

» Show that in (d), we have A | B.

» For each of (a), (b) and (c), assume that each variable is binary, and
find parameters so that AXB




Paths and colliders

p(A, B, C, D, E) = p(A)p(B)p(C|A, B)p(D|C)p(E|B, C)

» A node is a collider on some path if both arrows point into it on that
path.

» C is a collider on the path (A, C, B) but is not a collider on the path
(A, C, E) or on any of the following paths: (A, C, E, B), (D, C, B) or
(D,C,E).
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d-separation

» If all paths from node x to node y are blocked given nodes S then x
and y are d-separated by S.
> A path is blocked by S if at least one of the following is the case:
1. there is a collider on the path that is not in S and none of its descendants
arein S
2. there is a non-collider on the path that is in S.
» If x and y are d-separatedby S then x L y|S for any probability
distribution which factorises according to the DAG.

» Let’s do some d-separation exercises.
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Checking for d-separation

A path is blocked by S if at least one of the following is the case:

1. there is a collider on the path that is not in S and none of its
descendants are in S

2. there is a non-collider on the path that is in S.
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Hierarchical regression revisited

model 2
parameters 1 2
observations Y1 Yo Yk

k
P(H,y7u’o'2) = HP(YI|91 (Oilp, 0 )
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