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Agenda

» Various examples of ML models represented by Bayesian networks
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Using BNs to represent ML models

» Machine learning research papers frequently use Bayesian networks
to graphically represent machine learning models.

» They represent the data-generating process.
» Here’s'an example from NeurlPS 2019 [BS{9].
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https://papers.nips.cc/paper/8343-differentially-private-bayesian-linear-regression.pdf

Differentially private Bayesian linear regression

3.1 Privacy mechanism

Using the Laplace mechanism to release the noisy sufficient statistics z results
in the model shown in Figure [T. This is the same model used in non-private 6,0°
linear regression except for the introduction of z, which requires the exact
sufficient statistics s to have finite sensitivity. A standard assumption in @ _@
literature [Awan and Slavkovic| 20T8] [Sheffet, 2017 Wang| 2018] [Zhang|
is to assume x and y have known a priori lower and upper \C?

s

bounds, (ax. by ) and (a,, b, ). with bound widths w, = by — ay (assuming,
for simplicity, equal bounds for all covariate dimensions) and wy = b, —
ay, respectively. We can then reason about the worst case influence of an
individual on each component of s = [XTX, XTy.yTy], recalling that
s=3,t(x,yD), so that [Axr ), . Axy),. Aye| = [wg, wew,, w}]. | Figure 1: Private
The number of umque e]emem{lm sis [d(d +1)/2, d 1], 50 As = wid(d + | "CEression model.
1)/2 4 wyw,d + w?. The noisy sufficient statistics fit for public release are
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Naive Bayes

» Kevin Murphy’s book makes extensive use of graphical models for
machine learning.

» In a naive Bayes model for classification [Bis06; p. 380] the observed

variables X = (xy, ... xp) are assumed independent conditional on the
class variable z:

D
P(x,2) = P(2)P(x2) = P(2) ] | P(xil2) (1
i=1

»> And a latent variable model [Muri2; p. 345].
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Naive Bayes

#}_
%

(N

I

X

n

D D
P(x,Y,X,0) = P(x) [H P(ec,-)] { [P(Y;|7r) 11 P()(,,|s/i,ac,)] }
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A model with latent variables

0.0

N
P(6x, X, 2,02) = P(6x)P(62) [ | P(2102)P(xi|zi, 0x)

i=1




Hierarchical Linear Regression

Here’s a nice example of using Bayesian networks to represent different
approaches to a linear regression problem where there is extra ‘structure’.
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https://docs.pymc.io/notebooks/GLM-hierarchical.html

Standard regression (abbreviated)

//\

observations J1 Yo

parameter

k
= PO) [T P(vil0)
i=1




Separate regressions (abbreviated)

parameters 9 1 9 2

|

observations Y 1 Y 2

P9, y) = HPy,|6 P(6))

i=1




Hierarchical rearession (abbreviated)
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P(03y7p’302) - HP(yIWI 0|:u a )
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