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Dimensionality reduction

▶ Sometimes it is obvious we can throw away a dimension (i.e. a
variable).

[5.1, 3.5, 1.4, 0.2, 1],
[4.9, 3. , 1.4, 0.2, 1],
[4.7, 3.2, 1.3, 0.2, 1],
[4.6, 3.1, 1.5, 0.3, 1],
[5. , 3.6, 1.4, 0.2, 1],
....

▶ The idea with PCA is to rotate the data (i.e. choose a different
co-ordinate system) so that we end up with dimensions with low
variance . . .

▶ . . . which we can throw away without losing much information.
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Motivations for PCA

▶ We can either view PCA as looking for projections with maximum
variance [Bis06, §12.1.1],

▶ or looking for projections which minimise the distance from the original
points to their projections [Bis06, §12.1.2].

▶ These are equivalent (we get the same projections)
▶ I will present the derivation in terms of maximising variance.
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PCA in a picture (Bishop Fig 12.2)
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From D dimensions to 1

▶ A projection from D dimensions down to 1 is defined by a D
dimensional vector u1 (which we can choose to be a unit vector so
uT

1 u1 = 1).
▶ The projection of x is simply uT

1 x.
▶ So which projection (which u1) is ‘best’?
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Eigenvector projections
Given a bunch of N data points xn, the sample covariance matrix is:

S =
1
N

N∑
n=1

(xn − x̄)(xn − x̄)T

▶ The variance of the projected data is uT
1 Su1.

▶ We want to find the u1 that maximises this subject to uT
1 u1 = 1.

▶ Using some simple calculus (see [Bis06, p. 562]) we find that u1 must
satisfy (1) for some scalar λ1:

Su1 = λ1u1 (1)

▶ So u1 is an eigenvector of S (with eigenvalue λ1).
▶ Since uT

1 Su1 = λ1, we maximise variance by setting u1 to be the
eigenvector with the biggest eigenvalue.

▶ This eigenvector is the called the first principal component.
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And so on

▶ The second principal component is that direction which maximises
projected variance subject to being orthogonal to the first
principal component.

▶ Each subsequent principal component is chosen to maximise variance
subject to being orthogonal to all previous principal components.

▶ It can be shown that the principal components are the eigenvectors of
the covariance matrix ordered by eigenvalue.
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New co-ordinates
We have

xn =
D∑

i=1

(xT
n ui)ui =

D∑
i=1

αniui (2)

▶ So each datapoint is a linear combination of principal components (=
eigenvectors),

▶ but we (typically) only keep M < D of these dimensions.
▶ When approximating a D-dimensional datapoint xn by an

M-dimensional vector x̃n the best PCA approximation accounts for the
mean x̄ by adding a constant vector x̄ −

∑M
i=1(x̄

⊤ui)ui :

x̃n = x̄ +
M∑

i=1

(x⊤
n ui − x̄⊤ui)ui

=
M∑

i=1

(x⊤
n ui)ui + x̄ −

M∑
i=1

(x̄⊤ui)ui
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Seeing the eigenvectors (Bishop Fig 12.3)
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Seeing PCA reconstructions (Bishop Fig 12.5)
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Probabilistic PCA

▶ Basic idea: reformulate PCA as the maximum likelihood solution to a
latent variable model.

▶ Unlike with mixtures of Gaussians the latent variable here is
continuous.

▶ That’s why PCA is in the Continuous Latent Variables chapter of
Bishop.

James Cussens
james.cussens@bristol.ac.uk

COMS30035: PCA 11/15



The PPCA model

The latent variable z has a zero-mean unit-covariance Gaussian
distribution:

p(z) = N (z|0, I) (3)

The distribution of the observed data conditional on this latent variable is
another Gaussian:

p(x|z) = N (x|Wz + µ, σ2I) (4)

▶ So the parameters (to learn) are: W, µ and σ2.
▶ W is an D × M matrix where D is the dimension of the data and M is

the dimension of the PCA space, where M ≤ D.
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The generative view of PPCA (Bishop Fig 12.9)
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Maximum likelihood for PPCA

▶ The good (if unsurprising) news is that the MLE parameters for PPCA
can be computed exactly in closed form [Bis06, §12.2.1].

▶ And can be ‘read off’ from the (M first) eigenvectors and eigenvalues
of the sample covariance matrix.

▶ The MLE estimate for µ is just the sample mean.
▶ We might still resort to EM if the sample covariance matrix is huge, or

if we have to deal with missing values in the data.
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Why PPCA?

▶ Choosing M: since we now have a likelihoood, we can use
cross-validation or a Bayesian approach with a special prior on W.

▶ We can make connections to closely related models like factor
analysis (which is just a small generalisation of PPCA.)

▶ We can generate data from a given PPCA model.
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