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The cocktail party problem

» Imagine you are at a cocktail party where many people are talking.

What you hear is a mixture, with the mixing coefficients depending on
how close you are to the speaker (and how loud they are talking).

» The cocktail party problem is to separate out the signal you are
hearing into its constituent parts (i.e. the different speakers).

» This is an example of a blind source separation problem.

v

» Independent component analysis (ICA) aims to solve this problem.




The ICA model

v

| will be using the notation used by Murphy [Mur23; §28.6] since
Bishop is very brief on ICA.

Let x, € RP be the signal received at “time” n.
Let z, € RP be the vector of source signals at “time” n.
We simply assume there is an (unknown) D x D mixing matrix A:

X, = Az, (1)

So the signal received is a linear mixture of signals.

We ignore the temporal dependence between signals at different
timepoints and treat the data as iid.
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ICA and PPCA

X, = Az, (2)

» This looks like probabilistic PCA.

» But in PPCA we assume that the ‘sources’ are independent Gaussian
distributions.

» In ICA the sources z; are again assumed independent, but are
required to be non-Gaussian.

L
p(z:) = [ pi(zy) (3)
j=1

pj(z;) not Gaussian.
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What’s wrong with Gaussian?

Recall from PPCA:

p(xiz) = N (X|Wz + 1, 0°1) (@)

The marginal distribution over x is [Bis06, pp.572-573] is:
p(x) = N(x|u,C) (5)
C = wWw' 442 (6)

> Let R be an orthogonal matrix where RR” = 1 so that W — WRis a
rotation of the latent variables.

» The likelihood for PPCA is unchanged if we replace W by WR, so
PPCA can't distinguish between different rotations of the coordinate
system in the latent space, and so can’t get the ‘right’ one.




PCA vs ICA (Murphy Fig 28.33
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Solving ICA

Suppose we have no noise and the same number of signals and sensors
so we have:

X = WZt

L
p(z:) = [ [ pi(2y)
j=1

where W is a square matrix.

» Given observed values for X; and a particular choice for the p; we can
use MLE to get a value for W.

» scikit-learn uses FastICA, an approximate Newton method.
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Which non-Gaussian source distribution?

> There is some ‘true’ collection of source distributions p; (e.g. for
cocktail parties).
» But it is not critical for ICA to get the correct source distributions.

» The default for scikit-learn’s FastICA is to use the same source
distribution p(z) for all j and set G(z) = log cosh(z) where
G(2) = log p(2).

» But you have other options or can supply your own.
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