
COMS30035, Machine learning:
Kernels

James Cussens
james.cussens@bristol.ac.uk

School of Computer Science
University of Bristol

27th September 2023

James Cussens
james.cussens@bristol.ac.uk

COMS30035: Kernels 1/29



Extracting features

▶ Let’s have a look at [Mur22, p.370]

James Cussens
james.cussens@bristol.ac.uk

COMS30035: Kernels 2/29



tldr version

Suppose we’re doing classification where each training data point is (x, y).
Standard approach Choose a function ϕ. Map each raw data vector x into

a feature vector ϕ(x). Learn parameters using the feature
vectors and class labels. When making a prediction for a test
data vector x′ first encode as ϕ(x′) and use learned model to
make prediction.

Kernel approach Choose a kernel function k which (intuitively) measures
similarity between raw data vectors k(xm,xn). Learn
parameters using the k(xm,xn) values and class labels.
When making a prediction for a test data vector x′ use
learned parameters and values of k(xn,x′) to make a
prediction.

James Cussens
james.cussens@bristol.ac.uk

COMS30035: Kernels 3/29



Linear regression revisited

Consider a linear regression model:

y(x) = wTϕ(x) (1)

where
1. w is the M-dimensional parameter vector to be learned from the data

(which includes a component for the intercept)
2. x is some datapoint, and
3. ϕ(x) is the M-dimensional feature vector which x gets mapped to by

the basis functions [Bis06, §3.1].

James Cussens
james.cussens@bristol.ac.uk

COMS30035: Kernels 4/29



Dual representations

▶ Let N be the size of the data. Let Φ be the design matrix whose nth
row is just the feature vector for the nth datapoint (so it is basically ‘the
data’). It turns out that we can reformulate in terms of an
N-dimensional parameter vector a as follows:

w = ΦT a (2)

so that
y(x) = wTϕ(x) = aTΦϕ(x) (3)

▶ This is known as a dual representation.
▶ So we have replaced an M-dimensional parameter vector with an

N-dimensional one and moreover, to make a prediction for a new
datapoint we have to use the entire training set (i.e. Φ)

▶ On the face of it this does not seem such a great idea, (unless
perhaps M is much bigger than N).

James Cussens
james.cussens@bristol.ac.uk

COMS30035: Kernels 5/29



Kernel functions are scalar products in feature space

Suppose x is some test datapoint. Let’s have a look at Φϕ(x). Suppose,
for example, that we had 3 datapoints x1, x2 and x3 and 2 features so

Φϕ(x) =

ϕ1(x1) ϕ2(x1)
ϕ1(x2) ϕ2(x2)
ϕ1(x3) ϕ2(x3)

(
ϕ1(x)
ϕ2(x)

)
=

ϕ(x1)
Tϕ(x)

ϕ(x2)
Tϕ(x)

ϕ(x3)
Tϕ(x)

 (4)

If we define a kernel function

k(x,x′) = ϕ(x)Tϕ(x′) (5)

then we can write:

Φϕ(x) =

k(x1,x)
k(x2,x)
k(x3,x)

 (6)

James Cussens
james.cussens@bristol.ac.uk

COMS30035: Kernels 6/29



The kernel trick

So the prediction for datapoint x in our example is:

aTΦϕ(x) = aT

k(x1,x)
k(x2,x)
k(x3,x)

 (7)

▶ The key point is that we just need the kernel function to make the
prediction.

▶ The ‘kernel trick’ is to evaluate the kernel function values, e.g. k(x1,x)
without first computing ϕ(x1) and ϕ(x) and then computing their scalar
product.

▶ This allows us to use very high-dimensional (even infinite
dimensional!) feature spaces since features are never directly
computed.

James Cussens
james.cussens@bristol.ac.uk

COMS30035: Kernels 7/29



Kernel functions and similarity

▶ A kernel function represents the degree of ‘similarity’ between its two
arguments (so kernel functions are always symmetric).

▶ A high kernel value represents a high degree of similarity.
▶ Returning to our example, the prediction for x is:

y(x) = aT

k(x1,x)
k(x2,x)
k(x3,x)

 = a1k(x1,x) + a2k(x2,x) + a3k(x3,x) (8)

▶ So the prediction for x is a linear function of the ‘similarities’ between
x and each element of the training data.

▶ So unlike, say, linear regression it looks like we have to keep the entire
training set around to make predictions.

▶ But in fact we only need those xi where ai ̸= 0. (See later on support
vector machines.)

James Cussens
james.cussens@bristol.ac.uk

COMS30035: Kernels 8/29



Kernel functions and similarity

▶ A kernel function represents the degree of ‘similarity’ between its two
arguments (so kernel functions are always symmetric).

▶ A high kernel value represents a high degree of similarity.
▶ Returning to our example, the prediction for x is:

y(x) = aT

k(x1,x)
k(x2,x)
k(x3,x)

 = a1k(x1,x) + a2k(x2,x) + a3k(x3,x) (8)

▶ So the prediction for x is a linear function of the ‘similarities’ between
x and each element of the training data.

▶ So unlike, say, linear regression it looks like we have to keep the entire
training set around to make predictions.

▶ But in fact we only need those xi where ai ̸= 0. (See later on support
vector machines.)

James Cussens
james.cussens@bristol.ac.uk

COMS30035: Kernels 8/29



Learning with kernels

▶ So far we have focused on making predictions using a learned value
of the dual parameter vector a.

▶ If we needed to compute feature values ϕ(x) to learn a, then the
advantage of using kernels would disappear.

▶ But the good news is that (for many models) we can learn a just using
kernels.

▶ So both learning and predicting just require evaluating kernel
functions.

James Cussens
james.cussens@bristol.ac.uk

COMS30035: Kernels 9/29



The Gram matrix

▶ The Gram matrix K is defined to be ΦΦT .
▶ So Knm = ϕ(xn)

Tϕ(xm) = k(xn,xm) is the ‘similarity’ between the nth
and mth datapoint.

▶ Given data (the xn) and a particular choice of kernel k , we can
compute the Gram matrix K.

▶ K is what we need for learning.
▶ Note that K is symmetric.

James Cussens
james.cussens@bristol.ac.uk

COMS30035: Kernels 10/29



Learning with kernels example (1)

▶ Suppose we want to add a quadratic regulariser (aka weight decay)
term when minimising the squared error on the training set w [Bis06,
§3.1.4].

▶ Then, if we were not using kernels, our goal [Bis06, (6.2)] is to
minimise J(w) where:

J(w) =
1
2

N∑
n=1

{
wTϕ(xn)− tn

}2
+

λ

2
wT w (9)

▶ N is the number of training datapoints, λ is the regularisation
parameter and tn is the observed target value of the nth training
datapoint.

James Cussens
james.cussens@bristol.ac.uk

COMS30035: Kernels 11/29



Learning with kernels example (2)

▶ Let t = (t1, . . . , tN)T and let IN be the N × N identity matrix then it turns
out that setting:

a = (K + λIN)−1t (10)

▶ is equivalent to minimising J(w) (see [Bis06, §6.1] for the necessary
algebra).

▶ The key point is that the dual parameters can be learned just using
kernels and without computing any feature values.

James Cussens
james.cussens@bristol.ac.uk

COMS30035: Kernels 12/29



Recap

▶ Earlier we saw an example of:
1. learning: a = (K + λIN)−1t
2. and computing predicted values:

y(x) = a1k(x1, x) + a2k(x2, x) + a3k(x3, x)
where both were done using only a kernels

▶ But for learning we needed to compute the kernel value for every pair
of training datapoints, and for prediction we needed the entire training
set.

▶ Support vector machines are a kernel-based method for classification
which avoids this excessive computation.

▶ We still also need to address the question of which kernel function to
use, more on this later . . .

James Cussens
james.cussens@bristol.ac.uk

COMS30035: Kernels 13/29



Linear classification

Consider a simple linear model for two class classification:

y(x) = wTϕ(x) + b (11)

where the bias b has been made explicit and where the class label is
either -1 or 1.
▶ Let’s assume (rather optimistically!) that the training dataset is linearly

separable, so there is some w and b such that y(xn) > 0 if tn = 1 and
y(xn) < 0 if tn = −1. (So tny(x) > 0 for all xn.)

▶ Typically there will be more than one hyperplane that separates the
classes, so which one to choose?

James Cussens
james.cussens@bristol.ac.uk

COMS30035: Kernels 14/29



Maximum margin classifiers

▶ A natural choice (which has a theoretical justification) is to choose the
hyperplane which maximises the margin: the distance from the
hyperplane to the closest training datapoint.

▶ Let’s look at this using a scikit-learn Jupyter notebook
▶ The training data points closest to the separating hyperplane are the

support vectors.
▶ In a sense, they are the training datapoints ‘that matter’.

James Cussens
james.cussens@bristol.ac.uk

COMS30035: Kernels 15/29

https://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html


Maximising the margin
The learning (=optimisation) problem we have to solve is:

argmax
w,b

{
1

∥w∥
min

n
[tn(wTϕ(xn) + b)]

}
(12)

But we can rescale w and b so that for a point xn that is closest to the
separating hyperplane

tn(wTϕ(xn) + b) = 1 (13)

and for all datapoints:

tn(wTϕ(xn) + b) ≥ 1 n = 1, . . . ,N (14)

Plugging back into (12) we now just need to maximise 1
∥w∥ which is the

same as minimising:

argmin
w,b

1
2
∥w∥2 (15)

subject to the linear inequality constraints (14).
This is a quadratic programming problem.

James Cussens
james.cussens@bristol.ac.uk

COMS30035: Kernels 16/29



Dual representation
The dual representation of the maximum margin problem is to maximise:

L̃(a) =
N∑

n=1

an −
1
2

N∑
n=1

N∑
m=1

anamtntmk(xn,xm) (16)

subject to the constraints:

an ≥ 0, n = 1, . . . ,N (17)

N∑
n=1

antn = 0 (18)

▶ where, of course, k(xn,xm) = ϕ(xn)
Tϕ(xm).

▶ This is another quadratic program.
▶ This dual representation can be derived from the original one by using

Lagrange multipliers (which are the an).

James Cussens
james.cussens@bristol.ac.uk

COMS30035: Kernels 17/29



Support vector machines

▶ So to learn a max margin classifier we just need the k(xn,xm) values
(i.e. the Gram matrix).

▶ We do not need to compute ϕ(xn), so ϕ(xn) can be as
high-dimensional as we like!

▶ To classify a new datapoint we compute (the sign of)

y(x) =
N∑

n=1

antnk(x,xn) + b (19)

▶ So again only the kernel function is needed.
▶ Crucially, typically for most training datapoints xn we have an = 0 and

they are not needed for making predictions.
▶ The ones that are needed are called support vectors.

James Cussens
james.cussens@bristol.ac.uk

COMS30035: Kernels 18/29



Choosing a kernel

▶ You have already seen an SVM with a particular choice of kernel: the
linear kernel k(xn,xm) = xT

n xm.
▶ Let’s look at some more interesting kernels.
▶ We will use this useful Jupyter notebook
▶ The default kernel for NuSVC is the popular RBF kernel:

k(x,x′) = exp(−γ∥x − x′∥2) (20)

▶ The (implicit) feature space for the RBF kernel is infinite dimensional.

James Cussens
james.cussens@bristol.ac.uk

COMS30035: Kernels 19/29

https://scikit-learn.org/stable/auto_examples/svm/plot_svm_nonlinear.html


Kernelise everything!

▶ So far, we have implicitly assumed that the original form of the data x
is a vector of real numbers.

▶ But data can also be: graphs, text documents, images, websites,
whatever.

▶ For any sort of x as long as we have a kernel function k(x,x′),
measuring the similarity between x and x′ we can apply kernel-based
machine learning such as SVMs.

▶ This paper [KJM20] has an interesting flowchart which helps one
choose an appropriate graph kernel.

James Cussens
james.cussens@bristol.ac.uk

COMS30035: Kernels 20/29

https://arxiv.org/pdf/1903.11835.pdf


Choosing/Constructing kernels

▶ Suppose you have some, say, classification task and you decide to
use an SVM approach.

▶ How do you decide which kernel to use?

▶ In practice, people typically use existing, known kernels.
▶ RBF is a popular choice.
▶ One can also construct a new kernel function from existing known

kernels. See [Bis06, §6.2].
▶ If ‘rolling your own’ kernel, the function you define must be symmetric

and also any Gram matrix K must be a positive semidefinite matrix.
▶ scikit-learn lets you use your own Python functions as kernels, but

does not check that your function is a valid kernel!

James Cussens
james.cussens@bristol.ac.uk

COMS30035: Kernels 21/29



Choosing/Constructing kernels

▶ Suppose you have some, say, classification task and you decide to
use an SVM approach.

▶ How do you decide which kernel to use?
▶ In practice, people typically use existing, known kernels.
▶ RBF is a popular choice.
▶ One can also construct a new kernel function from existing known

kernels. See [Bis06, §6.2].
▶ If ‘rolling your own’ kernel, the function you define must be symmetric

and also any Gram matrix K must be a positive semidefinite matrix.
▶ scikit-learn lets you use your own Python functions as kernels, but

does not check that your function is a valid kernel!

James Cussens
james.cussens@bristol.ac.uk

COMS30035: Kernels 21/29



SVMs in practice

▶ So far we have assumed that:
1. the training data is linearly separable (in the implicit feature space)
2. and that we have only two classes.

▶ Let’s now remove these assumptions.

James Cussens
james.cussens@bristol.ac.uk

COMS30035: Kernels 22/29



Soft margins
▶ If we want a nice wide margin then we might have to allow training

points to be inside the margin,
▶ or even on the wrong side of the decicion boundary.
▶ Figure from [Bis06, p.332].
▶ Note: In the figure below three of the purple circles are missing their

cyan dots. This is corrected in the hard copy book.

James Cussens
james.cussens@bristol.ac.uk

COMS30035: Kernels 23/29



Allowing data on the wrong side of the margin

Earlier we had the following optimisation problem:

min
w,b

1
2

wT w

subject to tn(wTϕ(xn) + b) ≥ 1
(21)

scikit learn actually solves the following optimisation (primal version)

min
w,b,ξ

1
2

wT w + C
N∑

n=1

ξn

subject to tn(wTϕ(xn) + b) ≥ 1 − ξn,

ξn ≥ 0,n = 1, ...,N

(22)

James Cussens
james.cussens@bristol.ac.uk

COMS30035: Kernels 24/29

https://scikit-learn.org/stable/modules/svm.html#svm-mathematical-formulation


C as regularisation

min
w,b,ξ

1
2

wT w + C
N∑

n=1

ξn

subject to tn(wTϕ(xn) + b) ≥ 1 − ξn,

ξn ≥ 0,n = 1, ...,N

(23)

▶ “Points for which 0 < ξ ≤ 1 lie inside the margin but on the correct
side of the decision boundary . . . “

▶ “. . . and those data points for which ξn > 1 lie on the wrong side of the
decision boundary and are misclassified” [Bis06, p.332]

▶ We now have a ‘soft margin’ where being on the wrong side of the
margin is merely penalised and C is a regularisation parameter.

▶ Let’s look at part of the output of this Jupypter notebook to understand
the effect of varying the value of C.

James Cussens
james.cussens@bristol.ac.uk

COMS30035: Kernels 25/29

https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html


RBF SVM classification

gamma=10^-1, C=10^-2 gamma=10^0, C=10^-2 gamma=10^1, C=10^-2

gamma=10^-1, C=10^0 gamma=10^0, C=10^0 gamma=10^1, C=10^0

gamma=10^-1, C=10^2 gamma=10^0, C=10^2 gamma=10^1, C=10^2

James Cussens
james.cussens@bristol.ac.uk

COMS30035: Kernels 26/29



scikit learn’s decision function

The red/blue areas in the plots on the last slide represente values of the
decision function which is defined in the scikit learn documentation.∑

i∈SV

yiαiK (xi , x) + b, (24)

James Cussens
james.cussens@bristol.ac.uk

COMS30035: Kernels 27/29

https://scikit-learn.org/stable/modules/svm.html#svm-mathematical-formulation


RBF SVMs are non-parametric

▶ Recall that ‘the’ RBF kernel is: exp(−γ∥x − x ′∥2)

▶ SVMs with RBF kernels are non-parametric. The number of support
vectors (and thus dual parameters) depends on the data
(and value of γ).

Intuitively, the gamma parameter defines how far the influence of
a single training example reaches, with low values meaning ‘far’
and high values meaning ‘close’. The gamma parameters can be
seen as the inverse of the radius of influence of samples selected
by the model as support vectors. (scikit-learn docs)

James Cussens
james.cussens@bristol.ac.uk

COMS30035: Kernels 28/29



Multiclass classification

▶ SVMs are fundamentally two class classifiers.
▶ If there are k classes, approaches include:

one-versus-one where we train k(k − 1)/2 SVM classifiers to
distinguish between each pair of classes (and then take
a ‘vote’ for the predicted class)

one-versus-the-rest where we train k SVM classifiers to distinguish
between each class and all other classes.

▶ In scikit-learn, SVC and NuSVC go for one-versus-one and
LinearSVC does one-versus-the-rest.

▶ This Jupyter notebook provides an example of multi-class learning
with various choices of kernel.

James Cussens
james.cussens@bristol.ac.uk

COMS30035: Kernels 29/29

https://scikit-learn.org/stable/auto_examples/svm/plot_iris_svc.html


Christopher M. Bishop.
Pattern Recognition and Machine Learning.
Springer, 2006.

Nils M. Kriege, Fredrik D. Johansson, and Christopher Morris.
A survey on graph kernels.
Applied Network Science, 5, 2020.

Kevin P. Murphy.
Probabilistic Machine Learning: An introduction.
MIT Press, 2022.

James Cussens
james.cussens@bristol.ac.uk

COMS30035: Kernels 29/29


