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MLE for a Gaussian mixture

lnp(X|π,µ,Σ) =
N∑

n=1

ln

{
K∑

k=1

πkN (xn|µk ,Σk )

}
▶ No closed form for the MLE
▶ (At least K ! solutions)
▶ So have to resort to an iterative algorithm where we are only

guaranteed a local maximum.
▶ The algorithm is called the Expectation-Maximization (EM) algorithm.
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Settings derivatives to zero

µk =
1

Nk

N∑
n=1

γ(znk )xn

Σk =
1

Nk

N∑
n=1

γ(znk )(xn − µk )(xn − µk )
T

πk =
Nk

N

where γ(znk ) = p(zk = 1|xn) and Nk =
∑N

n=1 γ(znk ).

▶ See [Bis06, §9.22] for the derivation.
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EM for Gaussian mixtures
▶ To initialise the EM algorithm we choose starting values for µ, Σ and

π.
E step Compute the values for the responsibilities γ(znk ) given the current
parameter values:

γ(znk ) =
πkN (xn|µk ,Σk )∑K
j=1 πjN (xn|µj ,Σj)

M step Re-estimate the parameters using the current responsibilities:

µnew
k =

1
Nk

N∑
n=1

γ(znk )xn

Σnew
k =

1
Nk

N∑
n=1

γ(znk )(xn − µnew
k )(xn − µnew

k )T

πnew
k =

Nk

N
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This E-step is just Bayes theorem

p(zk = 1|xn) =
p(zk = 1)p(xn|zk = 1)

p(xn)
=

p(zk = 1)p(xn|zk = 1)∑K
j=1 p(zj = 1)p(xn|zj = 1)

The same equation in different notation is:

γ(znk ) =
πkN (xn|µk ,Σk )∑K
j=1 πjN (xn|µj ,Σj)
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EM in pictures
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Why does EM work?

▶ We have yet to show that each iteration of the EM algorithm increases
the log-likelihood lnp(X|π,µ,Σ).

▶ We will do this for the general case:

lnp(X|θ) = ln

{∑
z

p(X,Z|θ)

}

▶ Z are hidden variables (i.e. not observed) also called latent variables.
▶ {X ,Z} is the complete data. Assume that if we had the complete data

then MLE would be easy.
▶ {X} is the incomplete data.
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Decomposing the log-likelihood

▶ Let q(Z) be any distribution over the hidden variables.
▶ We have the following key decomposition of the log-likelihood:

lnp(X|θ) = L(q,θ) + KL(q||p)

where

L(q,θ) =
∑

Z

q(Z) ln
{

p(X,Z|θ)
q(Z)

}
KL(q||p) = −

∑
Z

q(Z) ln
{

p(Z|X,θ)
q(Z)

}

▶ An exercise for you: prove that this decomposition is correct (Exercise
9.24 in Bishop). Use the tip Bishop gives on p.451.
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Kullback-Leibler divergence

KL(q||p) = −
∑

Z

q(Z) ln
{

p(Z|X,θ)
q(Z)

}
▶ KL(p1||p2) denotes the Kullback-Leibler divergence between

probability distributions p1 and p2.
▶ KL-divergence is important in, e.g., information theory.
▶ It’s a bit like a ‘distance’ between two distributions.
▶ But it is not a true distance since, for example, it is not symmetric.
▶ KL(p1||p2) ≥ 0 and KL(p1||p2) = 0 if and only if p1 = p2.
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EM: key ideas

lnp(X|θ) = L(q,θ) + KL(q||p)

▶ KL(q||p) ≥ 0 for any choice of q, so L(q,θ) ≤ lnp(X|θ).
▶ In the E-step we increase L(q,θ) by updating q (and leaving θ fixed).
▶ In the M-step we increase L(q,θ) by updating θ (and leaving q fixed).
▶ After the E-step we have L(q,θ) = lnp(X|θ), so that in the following

M-step increasing L(q,θ) will also increase lnp(X|θ).
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The E-step

lnp(X|θold) = L(q,θold) + KL(q||p)

▶ In the E-step we update q but leave θold fixed.

▶ KL(q||p) = 0 when q = p, so to maximise L(q,θold) we set
q(Z) = p(Z|X,θold).

▶ This increases L(q,θold) but not lnp(X|θold).
▶ [Bis06, Fig 9.12] illustrates the E-step.
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The M-step

lnp(X|θnew) = L(q,θnew) + KL(q||p)

L(q,θ) =
∑

Z

q(Z) ln
{

p(X,Z|θ)
q(Z)

}
=

∑
Z

q(Z) ln p(X,Z|θ)−
∑

Z

q(Z) lnq(Z)

▶ In the M-step we find parameters θnew which maximise L(q,θ), while
leaving q fixed.

▶ This will necessarily increase lnp(X|θ) since KL(q||p) ≥ 0.

▶ In fact we get a ‘bonus’ since changing p from p(Z|X,θold) to
p(Z|X,θnew) will (typically) lead KL(q||p) to increase from 0 to some
positive value.

▶ [Bis06, Fig 9.13] illustrates the M-step.
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Visualising EM

▶ David Barber (from UCL) provides a nice visualisation for EM (where
the latent variable is binary).

▶ It’s Fig 11.2 on p.259 of his book [Bar12].
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http://web4.cs.ucl.ac.uk/staff/D.Barber/textbook/200620.pdf


Back to Gaussian mixtures

▶ In the standard case of independent and identically distributed (i.i.d.)
dataset X, we get:

p(Z|X,θ) =
N∏

n=1

p(zn|xn,θ)

▶ In the case of Gaussian mixtures the responsibilities γ(znk ) define the
p(zn|xn,θ).

▶ So computing the responsibilities is the E-step.
▶ And the M-step we saw on slide 4 does indeed maximise L(q,θ)

given the current responsibilities.
▶ Proving this is Exercises 9.8 and 9.9 in Bishop.

James Cussens
james.cussens@bristol.ac.uk

COMS30035: EM 14/14



David Barber.
Bayesian Reasoning and Machine Learning.
Cambridge University Press, 2012.

Christopher M. Bishop.
Pattern Recognition and Machine Learning.
Springer, 2006.

James Cussens
james.cussens@bristol.ac.uk

COMS30035: EM 14/14


