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MLE for a Gaussian mixture

N K

Inp(X|m, u, ) = Z In {Zﬁkj\/(xn“u(, Ek)}
n=1 k=1

» No closed form for the MLE

> (At least K! solutions)

» So have to resort to an iterative algorithm where we are only
guaranteed a local maximum.

» The algorithm is called the Expectation-Maximization (EM) algorithm.
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Settings derivatives to zero

N
Hnk = Z Y(Znk)Xn
N
Xk = ZW’(an) i) (X — )"
— Nk "
Tk = W

where v(zn) = p(zk = 1|X,) and Ny = 1, ¥(Zok)-

» See [Bis06, §9.22] for the derivation.




EM for Gaussian mixtures

» To initialise the EM algorithm we choose starting values for p, 3 and
.

E step Compute the values for the responsibilities (z.x) given the current
parameter values:
kN (Xn| i, Xk )
K
Zj:1 miN (Xn|pj, )
M step Re-estimate the parameters using the current responsibilities:

'V(an) =

N
N?ew = Z Y(Znk)Xn
N
E?GW — Z (an) new)(xn_u?ew)r

W
new _ N
N
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This E-step is just Bayes theorem

_ _ P(zx =1)p(Xn|zk =1) _ p(zk = 1)p(Xn|2x = 1)
Pl = Tk = plxs) S 0z = Dpxelz = 1)

The same equation in different notation is:

TN (Xn| e, i)
K
> j1 TN (Xn|pj, 2))

Y(zZnk) =
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EM in pictures
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Why does EM work?

» We have yet to show that each iteration of the EM algorithm increases
the log-likelihood In p(X|7, p, X).

» We will do this for the general case:

In p(X|0) = {Zp (X,Z/0) }

» Z are hidden variables (i.e. not observed) also called /atent variables.

» {X,Z} is the complete data. Assume that if we had the complete data
then MLE would be easy.

» {X} is the incomplete data.
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Decomposing the log-likelihood

> Let q(Z) be any distribution over the hidden variables.
» We have the following key decomposition of the log-likelihood:

In p(X|0) = L(q,0) + KL(ql|p)
where

£(q.0) = Zq(zwn{ X(Z)"’)}

DA

z

KL(ql|p)

> An exercise for you: prove that this decomposition is correct (Exercise
9.24 in Bishop). Use the tip Bishop gives on p.451.
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Kullback-Leibler divergence

_ L[ P(ZX.6)
KL(qllp) = ;q(zw{ s }

> KL(p1||p=) denotes the Kullback-Leibler divergence between
probability distributions py and po.

» KL-divergence is important in, e.g., information theory.

> It's a bit like a ‘distance’ between two distributions.

» But it is not a true distance since, for example, it is not symmetric.
» KL(p1||p2) > 0 and KL(p1]||p2) = 0 if and only if p; = p2.
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EM: key ideas

In p(X|0) = £L(q,0) + KL(ql|p)

» KL(ql||p) > 0 for any choice of g, so £(q,0) < In p(X|8).
> In the E-step we increase £(q, 8) by updating g (and leaving 6 fixed).
» In the M-step we increase £(q, 0) by updating @ (and leaving q fixed).

> After the E-step we have £(g, 0) = In p(X|0), so that in the following
M-step increasing £(q, €) will also increase In p(X|6).
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The E-step

In p(X|6°'9) = £(q,699) + KL(q||p)

» In the E-step we update g but leave 09! fixed.

> KL(g||p) = 0 when g = p, so to maximise £(q, 8°'9) we set
q(2) = p(z|X, 6°19).

> This increases £(g, 8°!9) but not In p(X|6°!9).

» [Bis06, Fig 9.12] illustrates the E-step.
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The M-step

n p(X|6"W) = £(q,6™Y) + KL(ql|p)

c@.0)= a2 { PEEP L = S a@)n p(x20) - a@ina@
Y4

z

» In the M-step we find parameters 8"®W which maximise £(qg, ), while
leaving g fixed.

> This will necessarily increase In p(X|0) since KL(q||p) > 0.

> In fact we get a ‘bonus’ since changing p from p(Z|X, 0°|d) to
p(Z|X, 8"CW) will (typically) lead KL(g]||p) to increase from 0 to some
positive value.

» [Bis06, Fig 9.13] illustrates the M-step.




Visualising EM

» David Barber (from UCL) provides a nice visualisation for EM (where
the latent variable is binary).

» It's Fig 11.2 on p.259 of his book [Bari2].
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http://web4.cs.ucl.ac.uk/staff/D.Barber/textbook/200620.pdf

Back to Gaussian mixtures

» In the standard case of independent and identically distributed (i.i.d.)
dataset X, we get:

N
p(Z|X.0) = [ p(znlxn. 6)
n=1

> In the case of Gaussian mixtures the responsibilities v(z) define the
p(zn|Xp, 0).
» So computing the responsibilities is the E-step.

» And the M-step we saw on slide 4 does indeed maximise £(q, 8)
given the current responsibilities.

» Proving this is Exercises 9.8 and 9.9 in Bishop.
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