COMS30035, Machine learning: Combining Models 3, Trees

Edwin Simpson
edwin.simpson@bristol.ac.uk
Department of Computer Science, SCEEM
University of Bristol

November 14, 2023

Agenda

- Model Selection
- Model Averaging
- Ensembles: Bagging
- Ensembles: Boosting and Stacking
- Tree-based Models
- Conditional Mixture Models
- Ensembles of Humans

Decision Trees

Decision Trees as Partitioning Input Space

- One model is responsible for assigning a decision for each region of input space;
- The correct model for an input \boldsymbol{x} is chosen by traversing the binary decision tree, following the path from the top to a leaf.
- Leaf node is responsible for assigning a decision, such as a:
- Class label;
- Probability distribution over class labels;
- Scalar value (for regression tasks).

Learning the Tree Structure

Learning the Tree Structure

- Which input variable to use at each node?

Learning the Tree Structure

- Which input variable to use at each node?
- What threshold to set for the split at each node?

Learning the Tree Structure

- Which input variable to use at each node?
- What threshold to set for the split at each node?
- Classification and Regression Trees (CART): one of many possible learning algorithms
- Objective: greedily minimise the error
- Regression: sum-of-squares
- Classification: cross-entropy as used in neural networks or Gini impurity

Learning the Tree Structure

- Number of possible solutions grows combinatorially with the number of input variables
- Greedy algorithm: add nodes one-at-a-time, choosing the best split at each point

Learning the Tree Structure

- Number of possible solutions grows combinatorially with the number of input variables
- Greedy algorithm: add nodes one-at-a-time, choosing the best split at each point

1. Start from the root node

Learning the Tree Structure

- Number of possible solutions grows combinatorially with the number of input variables
- Greedy algorithm: add nodes one-at-a-time, choosing the best split at each point

1. Start from the root node
2. Run exhaustive search over each possible variable and threshold for a new node. For each variable and threshold:

- Compute average of the target variable for each leaf of the proposed node
- Compute the error if we stop adding nodes here

Learning the Tree Structure

- Number of possible solutions grows combinatorially with the number of input variables
- Greedy algorithm: add nodes one-at-a-time, choosing the best split at each point

1. Start from the root node
2. Run exhaustive search over each possible variable and threshold for a new node. For each variable and threshold:

- Compute average of the target variable for each leaf of the proposed node
- Compute the error if we stop adding nodes here

3. Choose the variable \& threshold that minimise the error

Learning the Tree Structure

- Number of possible solutions grows combinatorially with the number of input variables
- Greedy algorithm: add nodes one-at-a-time, choosing the best split at each point

1. Start from the root node
2. Run exhaustive search over each possible variable and threshold for a new node. For each variable and threshold:

- Compute average of the target variable for each leaf of the proposed node
- Compute the error if we stop adding nodes here

3. Choose the variable \& threshold that minimise the error
4. Add a new node for the chosen variable and threshold.

Learning the Tree Structure

- Number of possible solutions grows combinatorially with the number of input variables
- Greedy algorithm: add nodes one-at-a-time, choosing the best split at each point

1. Start from the root node
2. Run exhaustive search over each possible variable and threshold for a new node. For each variable and threshold:

- Compute average of the target variable for each leaf of the proposed node
- Compute the error if we stop adding nodes here

3. Choose the variable \& threshold that minimise the error
4. Add a new node for the chosen variable and threshold.
5. Repeat step 2 until there are only n data points associated with each leaf node.

Learning the Tree Structure

- Number of possible solutions grows combinatorially with the number of input variables
- Greedy algorithm: add nodes one-at-a-time, choosing the best split at each point

1. Start from the root node
2. Run exhaustive search over each possible variable and threshold for a new node. For each variable and threshold:

- Compute average of the target variable for each leaf of the proposed node
- Compute the error if we stop adding nodes here

3. Choose the variable \& threshold that minimise the error
4. Add a new node for the chosen variable and threshold.
5. Repeat step 2 until there are only n data points associated with each leaf node.
6. Prune back the tree to remove branches that do not reduce error by more than a small tolerance value, ϵ.

Edwin Simpson

Pruning

- Balance residual training-set error against model complexity
- Start with a tree T_{0}

Pruning

- Balance residual training-set error against model complexity
- Start with a tree T_{0}
- Consider pruning each node in T_{0} by combining the branches to obtain tree T

Pruning

- Balance residual training-set error against model complexity
- Start with a tree T_{0}
- Consider pruning each node in T_{0} by combining the branches to obtain tree T
- Compute a criterion $C(T)=\sum_{\tau=1}^{|T|} e_{\tau}(T)+\lambda|T|$

Pruning

- Balance residual training-set error against model complexity
- Start with a tree T_{0}
- Consider pruning each node in T_{0} by combining the branches to obtain tree T
- Compute a criterion $C(T)=\sum_{\tau=1}^{|T|} e_{\tau}(T)+\lambda|T|$
- If $C(T) \leq C\left(T_{0}\right)$ keep the pruned tree, else reinstate the pruned node.

Interpretability

- The sequence of decisions is often easier to interpret than other methods (think of neural networks);
- However, sometimes small changes to the dataset cause big changes to the tree;
- If the optimal decision boundary is not aligned with the axes of an input variable, we need a lot of splits.

feature 1

Random Forest - Adapting Bagging to Trees

Random Forest - Adapting Bagging to Trees

- With bagging, base models make similar splits on the same features the strongest predictors - meaning their errors become correlated

Random Forest - Adapting Bagging to Trees

- With bagging, base models make similar splits on the same features the strongest predictors - meaning their errors become correlated
- Random forest modifies the training procedure for each tree, m :

1. Randomly sample N data points with replacement from a training set with N data points.
2. Learn the tree using the greedy CART algorithm but when determining each split, consider only $d \ll D$ randomly-chosen features.

Random Forest - Adapting Bagging to Trees

- With bagging, base models make similar splits on the same features the strongest predictors - meaning their errors become correlated
- Random forest modifies the training procedure for each tree, m :

1. Randomly sample N data points with replacement from a training set with N data points.
2. Learn the tree using the greedy CART algorithm but when determining each split, consider only $d \ll D$ randomly-chosen features.

- As with bagging, combine predictions by taking mean/majority vote.

Random Forest - Adapting Bagging to Trees

- With bagging, base models make similar splits on the same features the strongest predictors - meaning their errors become correlated
- Random forest modifies the training procedure for each tree, m :

1. Randomly sample N data points with replacement from a training set with N data points.
2. Learn the tree using the greedy CART algorithm but when determining each split, consider only $d \ll D$ randomly-chosen features.

- As with bagging, combine predictions by taking mean/majority vote.
- Extremely effective in many applications (see Murphy (2012), Machine Learning: A Probabilistic Perspective, Section 16.2.5)

Now do the quiz!

Please do the quiz for this lecture on Blackboard.

