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Agenda

I Model Selection
I Model Averaging
I Ensembles: Bagging
I Ensembles: Boosting and Stacking
I Tree-based Models
I Conditional Mixture Models
I Ensembles of Humans
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Decision Trees
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Decision Trees as Partitioning Input Space

I One model is responsible for assigning a decision for each region of
input space;

I The correct model for an input x is chosen by traversing the binary
decision tree, following the path from the top to a leaf.

I Leaf node is responsible for assigning a decision, such as a:
I Class label;
I Probability distribution over class labels;
I Scalar value (for regression tasks).
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Learning the Tree Structure

I Which input variable to use at each node?
I What threshold to set for the split at each node?
I Classification and Regression Trees (CART): one of many possible

learning algorithms
I Objective: greedily minimise the error

I Regression: sum-of-squares
I Classification: cross-entropy as used in neural networks or Gini impurity
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Learning the Tree Structure

I Number of possible solutions grows combinatorially with the number
of input variables

I Greedy algorithm: add nodes one-at-a-time, choosing the best split at
each point

1. Start from the root node
2. Run exhaustive search over each possible variable and threshold for a

new node. For each variable and threshold:
I Compute average of the target variable for each leaf of the proposed node
I Compute the error if we stop adding nodes here

3. Choose the variable & threshold that minimise the error
4. Add a new node for the chosen variable and threshold.
5. Repeat step 2 until there are only n data points associated with each leaf

node.
6. Prune back the tree to remove branches that do not reduce error by

more than a small tolerance value, ε.
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Pruning

I Balance residual training-set error against model complexity
I Start with a tree T0

I Consider pruning each node in T0 by combining the branches to
obtain tree T

I Compute a criterion C(T ) =
∑|T |

τ=1 eτ (T ) + λ|T |
I If C(T ) ≤ C(T0) keep the pruned tree, else reinstate the pruned node.
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Interpretability

I The sequence of decisions is
often easier to interpret than
other methods (think of neural
networks);

I However, sometimes small
changes to the dataset cause
big changes to the tree;

I If the optimal decision boundary
is not aligned with the axes of an
input variable, we need a lot of
splits.

feature 1

feature 2
A

B

X[3] <= 0.75
gini = 0.663
samples = 90

value = [33, 31, 26]

gini = 0.0
samples = 33

value = [33, 0, 0]

True

X[3] <= 1.55
gini = 0.496
samples = 57

value = [0, 31, 26]

False

gini = 0.0
samples = 29

value = [0, 29, 0]

X[2] <= 5.05
gini = 0.133
samples = 28

value = [0, 2, 26]

X[1] <= 2.9
gini = 0.408
samples = 7

value = [0, 2, 5]

gini = 0.0
samples = 21

value = [0, 0, 21]

gini = 0.0
samples = 4

value = [0, 0, 4]

X[2] <= 4.9
gini = 0.444
samples = 3

value = [0, 2, 1]

X[0] <= 5.95
gini = 0.5
samples = 2

value = [0, 1, 1]

gini = 0.0
samples = 1

value = [0, 1, 0]

gini = 0.0
samples = 1

value = [0, 1, 0]

gini = 0.0
samples = 1

value = [0, 0, 1]
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Random Forest – Adapting Bagging to Trees

I With bagging, base models make similar splits on the same features –
the strongest predictors – meaning their errors become correlated

I Random forest modifies the training procedure for each tree, m:
1. Randomly sample N data points with replacement from a training set

with N data points.
2. Learn the tree using the greedy CART algorithm but when determining

each split, consider only d � D randomly-chosen features.
I As with bagging, combine predictions by taking mean/majority vote.
I Extremely effective in many applications (see Murphy (2012), Machine

Learning: A Probabilistic Perspective, Section 16.2.5)
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Now do the quiz!

Please do the quiz for this lecture on Blackboard.
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