COMS30035, Machine learning:
Combining Models 4, Conditional Mixture Models

Edwin Simpson
edwin.simpson@bristol.ac.uk

Department of Computer Science, SCEEM
University of Bristol

November 16, 2023

.uk

COMS30035, Machine leal onditional Mixture Moc



Agenda

» Model Selection

» Model Averaging

» Ensembles: Bagging

» Ensembles: Boosting and Stacking
» Tree-based Models

» Conditional Mixture Models

» Ensembles of Humans
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Recap

» Model selection: choose the right model for the whole dataset —> hard
selection

» Bayesian model averaging (BMA): probabilistically select the right
model for the whole dataset — soft selection

» Decision trees: split the feature space and model each region by one
leaf node —> hard selection depending on features
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Recap

» Model selection: choose the right model for the whole dataset —> hard
selection

» Bayesian model averaging (BMA): probabilistically select the right
model for the whole dataset — soft selection

» Decision trees: split the feature space and model each region by one
leaf node —> hard selection depending on features

» Conditional mixture models: perform a soft, probabilistic split of the
feature space —> soft selection depending on features
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Mixture of Experts

» Each data point is processed by a weighted combination of
specialised 'expert’ models

» Weights: probabilities that depend on the features x,, of the data point
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patient to multiple specialists for examination.
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Mixture of Experts

» Each data point is processed by a weighted combination of
specialised 'expert’ models

» Weights: probabilities that depend on the features x,, of the data point

» Think of medical diagnosis: based on the patient’s symptoms, a GP
refers the patient to a specialist

» If they are unsure what is causing the symptoms, they may send the
patient to multiple specialists for examination.

» Similarly, some inputs x, may require a combination of expert models

» Contrast with decision trees, which assign each data point to a single
leaf node
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Mixture of Experts
Imagine we would like to learn a model of this function:

—-=—- target function

1.2
/
1.0 A I’
]
]
[}
- I
£ 0.8 1 1 \
= 1
a 1 \
38 1 \
Q ! \
3 0.6 A H \
<
1
> ! \
9] 1 \
204 ! AN
s ] S~es
[} S~
,l \\\ I/
] 1 N /
0.2 K AN /
1 \ /
1 N 4
N 7
! \\~_’/
0.0 L T T T T T
4 6 8 10
feature x

COMS30035, Machine learning

ional Mixture Moc




Mixture of Experts
We have two expert models: model 1 is close to our target on the left,
model 2 is close to our target on the right.
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Mixture of Experts (MoE)
MoE reproduces the target function by learning weights for each model
and taking a weighted sum of their predictions.
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Mixture of Experts

» Goal: predict target variable t, given features x,
» Component distribution depends on input feature vector x,.

=

P(tn|Xn, ¢, ) = Zﬁk(xn)P(tnP(m Dk) (1)
k=1
> m(X,) is the weight for model k in a combination of models.

» The weights can be learned as part of EM (see Bishop 14.5.3 for
more)
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Now do the quiz!

Please do the quiz for this lecture on Blackboard.
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