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Agenda

» Markov Models

» Hidden Markov Models

» EM for HMMs

» Linear Dynamical Systems

Markov Models



Textbook

We will follow Chapter 13 of the Bishop book: Bishop, C. M., Pattern
recognition and machine learning (2006). Available for free here.



https://www.microsoft.com/en-us/research/people/cmbishop/
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i.i.d. Data

» Up to now, we have considered the data points in our datasets to be
independent and identically distributed (i.i.d.)

> Independent: the value of one data point does not affect the
others,p(X1, X2) = p(X1)p(Xz2)

» Identically distributed: all data points have the same distribution,
p(xi) = p(x;),Vi,vj




i.i.d. Data

» So, once you have trained a classifier or regressor, you can predict the
output for each data point independently.

» Can you think of situations where the i.i.d. assumption does not
apply?

Edwin Simpson
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Sequential Data

» The i.i.d. assumption ignores any ordering of the data points.

» Data points often occur in a sequence, such as words in a sentence,
frames in a video, sensor observations over time, stock prices...

» This can be generalised to more than one dimension: object in
different parts of an image, geographical data on a map... (not
covered in this lecture).




Sequential Data

» The i.i.d. assumption ignores any ordering of the data points.

» Data points often occur in a sequence, such as words in a sentence,
frames in a video, sensor observations over time, stock prices...

» This can be generalised to more than one dimension: object in
different parts of an image, geographical data on a map... (not
covered in this lecture).

» Can you think of some classification or regression tasks for these
types of data?
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» How have we modelled relationships between data points so far?
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Modelling Sequential Data

» How have we modelled relationships between data points so far? —
Through their input features.

» Can we model sequential relationships by simply making time or
position in the sequence into another feature?

» No — The timestamp or positional index is not in itself an informative
feature

» But the data observed at other points in the sequence tells us about
our current data point

COMS30035, Machi



Modelling Sequential Data

> Look at the following two texts from Bishop’s book, both with a missing
word:

> “later termed Bayes’ by Poincarré”
> “The evaluation of this conditional can be seen as an example of Bayes’
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Modelling Sequential Data

> Look at the following two texts from Bishop’s book, both with a missing
word:

> “later termed Bayes’ by Poincarré”
> “The evaluation of this conditional can be seen as an example of Bayes’

» Can you guess the missing words? How did you guess them?

» You can guess that the missing word in both cases is "theorem" or
maybe "rule", because of the word “Bayes”™ right before it.

» The first missing word is at position 3, the second is at position 13, but
these position indexes don'’t help to identify the missing word.
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How Can We Model the Dependencies?

ii.d., p(xn|X1,...,Xn—1) = p(Xp)
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How Can We Model the Dependencies?

ii.d., p(Xn|X1,...,Xn—1) = p(Xp)

QEONOND

Modelling all connections, p(x,|X1, ..., X,—1) — intractable
BNCEoz2

1st order Markov chain, p(Xn|X1, ..., Xn—1) = P(Xn|Xn—-1)

DEORONC

P(X1,...; Xn) = P(X1)Hg:2 P(Xn|Xn-1)

uk
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Homogeneous Markov Chains

» Stationary distribution: the probability distribution remains the same
over time.

» This leads to a homogeneous Markov chain.

» E.g., the parameters of the distribution remain the same while the data
evolves.

» Contrast with non-stationary distributions that change over time.
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Higher-Order Markov Models

» Sometimes it is necessary to consider earlier observations using a
higher-order chain.

» However, the number of parameters increases with the order of the
Markov chain, meaning higher-order models are often impractical.

1st order Markov chain, p(Xn|X1, ..., Xp—1) = p(Xn|Xn—1)

QDEORORD

2nd order Markov chain, p(Xn|X1, ..., Xn—1) = p(Xn|Xn—1, Xn—_2)

DSO=0D
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State Space Models

» What if we don’t directly observe the states we want to model?

» E.g., we want to predict the state of the weather (raining, sunny,
cloudy, rainfall)

» We observe noisy measurements of temperature, wind, rainfall over a
period of time
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State Space Models

» What if we don’t directly observe the states we want to model?
» E.g., we want to identify different actions in a video of a game of
tennis, such as backhand volley

» We observe the frames in a video, each one of which is a tensor of
pixel values
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State Space Models

» What if we don’t directly observe the states we want to model?

» E.g., we want to identify different actions in a video of a game of
tennis, such as backhand volley

» We observe the frames in a video, each one of which is a tensor of
pixel values

» We encounter the same problem as we do in i.i.d. classification and
regression: the sequential variable we wish to predict is not directly
observed.
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State Space Models

» Introduce latent variables, z, that form a Markov chain;
» Each observation x, depends on z;;

» This means we do not need to model the dependencies between
observations x, directly;

» Latent variables model the state of the system, while observations
may be of different types, contain noise...

E)~(z) 2~z

ORONORD
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State Space Models

» Does this look similar to any classifiers you have come across before?
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State Space Models

» Hidden Markov Models (HMMs): Discrete state z, observations may
be continuous or discrete according to any distribution. — next part of
this lecture

» Linear Dynamical Systems (LDS): Continuous state z, observations
are continuous, both have Gaussian distributions — after reading
week

» We will consider both supervised and unsupervised settings.

DeDRORD

ORONORD
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