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Agenda

I Markov Models
I Hidden Markov Models
I EM for HMMs
I Linear Dynamical Systems
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From HMM to LDS

I HMM assumes discrete latent states.
I Linear dynamical systems (LDS) assume states have continuous

values.
I Both have the same graphical model:

z1 z2 z3 z4

x1 x2 x3 x4

I Inference has the same form as for an HMM, but when marginalising
zn−1 and zn+1, we take integrals instead of sums.
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Motivations for LDS

I Noisy sensors: inferring the true sequence of states from observations
with Gaussian noise.

I Tracking: predicting the next movement and tracing the path from
noisy observations.
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Transition and Emission Distributions for LDS

I p(z1) = N (z1|µ0,V 0);
I p(zn|zn−1) = N (zn|Azn−1, Γ);
I p(xn|zn) = N (xn|Czn,Σ).
I Note that the means of both distributions are linear functions of the

latent states.
I This choice of distributions ensures that the posteriors are also

Gaussians with updated parameters
I This means that O(N) inference can still be performed using the

sum-product algorithm.
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Inference for an LDS

I Kalman filter = forward pass of sum-product for LDS.
I Kalman smoother = backward pass of sum-product for LDS.
I No need for an analogue of Viterbi: the most likely sequence is given

by the individually most probable states, so we get this from the
Kalman equations.
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Forward Inference (Kalman Filter) for an LDS

I

α(zn) = N (xn|Czn,Σ)

∫
N (zn|Azn−1, Γ)α(zn−1)dzn−1 (1)

I Normalising results in a Gaussian-distributed variable, whose
parameters can be computed efficiently:
α̂(zn) = p(zn|x1, ...,xn) = N (zn|µn,V n), where
I µn is a function of µn−1, xn, A and C.
I V n is a function of V n−1, Σ, A, Γ and C.

I We can view each forward step as predicting zn based on the
distribution over zn−1, then correcting that prediction given the new
observation xn.

I For details, see Bishop (2006), Section 13.3.1
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Backward Inference (Kalman Smoother) for an LDS

I Backward pass also follows that of the HMM: messages are passed
from the final state to the start of the sequence.

I The backward messages contain information about future states that
affects the posterior distribution at each step n.

I Since the transition and emission probabilities are all Gaussian, the
posterior responsibilities are also Gaussian, as are the state pair
expectations.

I For details, see Bishop (2006), Section 13.3.1
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Learning the Parameters of LDS

I Kalman filter/smoother are analogous to the forward-backward
algorithm for HMMs.

I Remember that this algorithm is used for the E step of EM.
I The parameters are optimised in the M step as before, by using the

responsibilities E[zn], E[znzT
n ] and state pair expectations E[znzT

n−1].
I For details, see Bishop (2006), Section 13.3.2
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Now do the quiz!

Please do the quiz for this lecture on Blackboard.
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