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Scheduled Sessions

I Lectures: Tuesday, 3pm, Queens 1.15 and Friday, 9am, Queens 1.15

I Labs: Thursday 9am - Noon in MVB 2.11

I Lab Environment [Jupyter + Python] 1

I Lab relates to the previous Friday + Tuesday lecture
I This week we introduce Scikit-learn and revisit linear regression

I Teams: Please post any questions here! We will try to reply or answer
in the lectures

1For those doing the CS undergrad, we will follow a similar setup to Data-driven CS.
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Assessments
I Option 1, 100% Exam:

I COMS30033, 10 CP

I Mathematical questions, explanations of ML methods and concepts,
working through toy examples

I Completing labs is extremely beneficial to your understanding of ML –
make sure you attend labs!

I Option 2, 50% Exam, 50% Lab:
I Same exam as above
I Coursework will be a small project involving an ML challenge and

experiments
I Assessed based on a written report project
I The methods taught in labs will be needed for the coursework
I Coursework released at beginning of week 9 (coursework period is

full-time during weeks 9-11)

I Discussion with others is encouraged, but submissions need to be
unique [plagiarism is taken seriously!]
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What is machine learning?

I Machine Learning (ML) is the study of computer algorithms that
learn to perform a task from data or experience.

I The algorithm learns a model of the data for making predictions,
decisions, or to help understand the data.

I It is typically grounded in Statistics and seen as a subfield of Artificial
Intelligence.
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Machine learning interest [Google trends]
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Examples:

What kind of tasks can we learn from data?
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Examples: Linear regression

Observe one numerical variable and use it to predict another using a linear
model.
Pros: Simple model Cons: Simple model

Example: Can we predict property prices in Boston?
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Examples: Classification

When we want to automatically separate data into discrete classes.

Example: Is it a dog or a bagel?
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Examples: Dimensionality reduction
Example application: compress data with many dimensions to 2D so that
we can visualise it.
Pros: Easy to compute (e.g., using PCA). Cons: Loss of feature semantics.

Example: How many features/components are enough to explain 80% of
the variance in a given dataset? More here.
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Examples: Generating text in natural language

Pros: Can give impressive results (e.g. using deep learning).
Cons: Models can be hard to interpret and control.

Example using a Transformer (a type of neural network):

Input: "Machine Learning is the study of computer algorithms that learn a model of
data."

Output/completion: "Traditional AI, such as natural language processing,
machine translation, image recognition, and machine translation relies heavily on
well-defined data, and can perform well without much further manipulation of the
data. Typically, a machine learning system recognizes patterns of data and then
uses those patterns to predict outcomes of a given scenario. (see prediction)"

Try it out app.inferkit.com/demo!
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Examples: Graphical models

When we use a graphical model to represent an explicit probabilistic
model.

Example: What are the changes of survival for a smoker?
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How does it relate to other units

I This unit builds directly on previous units

I Data-driven Computer Science [introduction to data science in Python]
I Algorithms I and II [design/analyse algorithms, and data structures]
I Math for CS I and II [algebra and statistics]

I And is a building block for more advanced units (4th year):
I Applied Deep Learning (neural networks)
I Information Processing & the Brain (ML and neuroscience)
I Cloud Computing and Big Data (ML on the cloud)
I Advanced Computer Vision (ML for vision)
I Applied Data Science (ML and data management)

I Individual Project (e.g., on applications or ML or advanced ML)
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What we will cover

We will focus on the following textbook
I Bishop, C. M., Pattern recognition and machine learning (2006).

Available for free here.

With some sections from:

I Murphy, K., Machine learning a probabilistic perspective (2012). The
book is also freely available here.
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What we will cover

1. Part 1: Overview, ML concepts, revisiting regression, classification
and neural networks [» Edwin Simpson]

2. Part 2: Kernel methods (SVM), Probabilistic graphical models,
(mixture models, EM), Dimensionality reduction (PCA, ICA) [» James
Cussens, unit director]

3. Part 3: Sequential data (HMM, LDS), Selecting and Combining
Models (Ensembles) [» Edwin Simpson]
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