COMS30035, Machine learning: Introduction

Edwin Simpson (based on slides by Rui Ponte Costa)

Department of Computer Science, SCEEM University of Bristol

September 25, 2023

Edwin Simpson (based on slides by Rui Ponte Costa)

Unit Outline (see Blackboard)

1	Introduction [stream]Machine learning concepts [stream]	L1: Revision of Jupyter Notebook, ML libraries and regression.	Revisiting regression [stream], Classification and neural networks [stream]
2	Kernel machines [Kernels 1, stream] [Kernels 2, stream] [Kernels 3, stream]	L2: Classification, nnets and SVMs	Introduction to graphical models [Prob revision, stream] [PGM 1, stream] [Netica demo, stream] [PGM 2, stream] [PGM 3, stream]
3	Bayesian ML using graphical models [PGM 4, stream] [PGM 5, stream] [Notebook, stream]	L3: Probabilistic graphical models	k-means and mixtures of Gaussians [k-means, Gaussmix stream] [Running k-means, k-means problems, stream]
4	[The EM algorithm stream]	L4: k-means and EM	PCA [PCA <u>stream]</u> Eigenfaces <u>stream]</u> [Probabilistic PCA, stream]
5	ICA [ICA, <u>stream]</u>	L5: PCA and ICA	Seqential data [Markov Models stream] [Hidden Markov Models, stream]
6	Reading week		
7	Sequential data [EM for HIMMs stream] [Linear Dynamical Systems, stream] [Quick Visual example of an LDS. stream]	L6: Hidden Markov Models	Selection and Combination [Model selection and averaging <u>stream]</u> [Ensembles: bagging and boosting, <u>stream]</u>
8	Trees, Mixtures and Crowds [Trees stream] [Conditional mixtures, stream] [Crowdsourcing, stream]	L7: Trees and Ensemble methods	
9-11	Coursework weeks		
12	Review week		

Edwin Simpson (based on slides by Rui Ponte Costa)

Lectures: Tuesday, 3pm, Queens 1.15 and Friday, 9am, Queens 1.15

¹For those doing the CS undergrad, we will follow a similar setup to Data-driven CS.

Edwin Simpson (based on slides by Rui Ponte Costa)

Lectures: Tuesday, 3pm, Queens 1.15 and Friday, 9am, Queens 1.15

Labs: Thursday 9am - Noon in MVB 2.11

¹For those doing the CS undergrad, we will follow a similar setup to Data-driven CS.

Edwin Simpson (based on slides by Rui Ponte Costa)

Lectures: Tuesday, 3pm, Queens 1.15 and Friday, 9am, Queens 1.15

Labs: Thursday 9am - Noon in MVB 2.11

Lab Environment [Jupyter + Python]¹

¹For those doing the CS undergrad, we will follow a similar setup to Data-driven CS.

Edwin Simpson (based on slides by Rui Ponte Costa)

- Lectures: Tuesday, 3pm, Queens 1.15 and Friday, 9am, Queens 1.15
- Labs: Thursday 9am Noon in MVB 2.11

- Lab Environment [Jupyter + Python]¹
- Lab relates to the previous Friday + Tuesday lecture

¹For those doing the CS undergrad, we will follow a similar setup to Data-driven CS.

Edwin Simpson (based on slides by Rui Ponte Costa)

- Lectures: Tuesday, 3pm, Queens 1.15 and Friday, 9am, Queens 1.15
- Labs: Thursday 9am Noon in MVB 2.11

- Lab Environment [Jupyter + Python]¹
- Lab relates to the previous Friday + Tuesday lecture
- This week we introduce Scikit-learn and revisit linear regression

¹For those doing the CS undergrad, we will follow a similar setup to Data-driven CS.

Edwin Simpson (based on slides by Rui Ponte Costa)

- Lectures: Tuesday, 3pm, Queens 1.15 and Friday, 9am, Queens 1.15
- Labs: Thursday 9am Noon in MVB 2.11

- Lab Environment [Jupyter + Python]¹
- Lab relates to the previous Friday + Tuesday lecture
- This week we introduce Scikit-learn and revisit linear regression
- Teams: Please post any questions here! We will try to reply or answer in the lectures

Edwin Simpson (based on slides by Rui Ponte Costa)

¹For those doing the CS undergrad, we will follow a similar setup to Data-driven CS.

- Option 1, 100% Exam:
 - COMS30033, 10 CP

Edwin Simpson (based on slides by Rui Ponte Costa)

Option 1, 100% Exam:

- COMS30033, 10 CP
- Mathematical questions, explanations of ML methods and concepts, working through toy examples

Option 1, 100% Exam:

- COMS30033, 10 CP
- Mathematical questions, explanations of ML methods and concepts, working through toy examples
- Completing labs is extremely beneficial to your understanding of ML make sure you attend labs!

Option 1, 100% Exam:

- COMS30033, 10 CP
- Mathematical questions, explanations of ML methods and concepts, working through toy examples
- Completing labs is extremely beneficial to your understanding of ML make sure you attend labs!

Option 2, 50% Exam, 50% Lab:

- Same exam as above
- Coursework will be a small project involving an ML challenge and experiments
- Assessed based on a written report project
- The methods taught in labs will be needed for the coursework
- Coursework released at beginning of week 9 (coursework period is full-time during weeks 9-11)

Option 1, 100% Exam:

- COMS30033, 10 CP
- Mathematical questions, explanations of ML methods and concepts, working through toy examples
- Completing labs is extremely beneficial to your understanding of ML make sure you attend labs!

Option 2, 50% Exam, 50% Lab:

- Same exam as above
- Coursework will be a small project involving an ML challenge and experiments
- Assessed based on a written report project
- The methods taught in labs will be needed for the coursework
- Coursework released at beginning of week 9 (coursework period is full-time during weeks 9-11)
- Discussion with others is encouraged, but submissions need to be unique [plagiarism is taken seriously!]

What is machine learning?

Machine Learning (ML) is the study of computer algorithms that learn to perform a task from data or experience.

What is machine learning?

- Machine Learning (ML) is the study of computer algorithms that learn to perform a task from data or experience.
- The algorithm learns a model of the data for making predictions, decisions, or to help understand the data.

What is machine learning?

- Machine Learning (ML) is the study of computer algorithms that learn to perform a task from data or experience.
- The algorithm learns a model of the data for making predictions, decisions, or to help understand the data.
- It is typically grounded in Statistics and seen as a subfield of Artificial Intelligence.

Machine learning interest [Google trends]

Edwin Simpson (based on slides by Rui Ponte Costa)

What kind of tasks can we learn from data?

Edwin Simpson (based on slides by Rui Ponte Costa)

Examples: Linear regression

Observe one numerical variable and use it to predict another using a linear model.

Pros: Simple model Cons: Simple model

Example: Can we predict property prices in Boston?

Examples: Linear regression

Observe one numerical variable and use it to predict another using a linear model.

Pros: Simple model Cons: Simple model

Example: Can we predict property prices in Boston?

Edwin Simpson (based on slides by Rui Ponte Costa)

Examples: Linear regression

Observe one numerical variable and use it to predict another using a linear model.

Pros: Simple model Cons: Simple model

House value (\$1000s) House value (\$1000s) ŝ Number of rooms Crime rate [per capita]

Example: Can we predict property prices in Boston?

Edwin Simpson (based on slides by Rui Ponte Costa)

Examples: Classification

When we want to automatically separate data into discrete classes.

Edwin Simpson (based on slides by Rui Ponte Costa)

Examples: Classification

When we want to automatically separate data into discrete classes.

Example: Is it a dog or a bagel?

Edwin Simpson (based on slides by Rui Ponte Costa)

Examples: Dimensionality reduction

Example application: compress data with many dimensions to 2D so that we can visualise it.

Pros: Easy to compute (e.g., using PCA). **Cons**: Loss of feature semantics.

Examples: Dimensionality reduction

Example application: compress data with many dimensions to 2D so that we can visualise it.

Pros: Easy to compute (e.g., using PCA). Cons: Loss of feature semantics.

Example: How many features/components are enough to explain 80% of the variance in a given dataset? More here.

Edwin Simpson (based on slides by Rui Ponte Costa)

Examples: Generating text in natural language

Pros: Can give impressive results (e.g. using deep learning). **Cons**: Models can be hard to interpret and control.

Examples: Generating text in natural language

Pros: Can give impressive results (e.g. using deep learning). **Cons**: Models can be hard to interpret and control.

Example using a Transformer (a type of neural network):

Input: "Machine Learning is the study of computer algorithms that learn a model of data."

Examples: Generating text in natural language

Pros: Can give impressive results (e.g. using deep learning). **Cons**: Models can be hard to interpret and control.

Example using a Transformer (a type of neural network):

Input: "Machine Learning is the study of computer algorithms that learn a model of data."

Output/completion: "Traditional AI, such as natural language processing, machine translation, image recognition, and <u>machine translation</u> relies heavily on well-defined data, and can perform well without much further manipulation of the data. Typically, a machine learning system recognizes patterns of data and then uses those patterns to predict outcomes of a given scenario. (see prediction)"

Try it out app.inferkit.com/demo!

Examples: Graphical models

When we use a graphical model to represent an explicit probabilistic model.

Examples: Graphical models

When we use a graphical model to represent an explicit probabilistic model.

Example: What are the changes of survival for a smoker?

This unit builds directly on previous units

Edwin Simpson (based on slides by Rui Ponte Costa)

This unit builds directly on previous units

Data-driven Computer Science [introduction to data science in Python]

- Data-driven Computer Science [introduction to data science in Python]
- Algorithms I and II [design/analyse algorithms, and data structures]

- Data-driven Computer Science [introduction to data science in Python]
- Algorithms I and II [design/analyse algorithms, and data structures]
- Math for CS I and II [algebra and statistics]

- Data-driven Computer Science [introduction to data science in Python]
- Algorithms I and II [design/analyse algorithms, and data structures]
- Math for CS I and II [algebra and statistics]
- And is a building block for more advanced units (4th year):
 - Applied Deep Learning (neural networks)
 - Information Processing & the Brain (ML and neuroscience)
 - Cloud Computing and Big Data (ML on the cloud)
 - Advanced Computer Vision (ML for vision)
 - Applied Data Science (ML and data management)

- Data-driven Computer Science [introduction to data science in Python]
- Algorithms I and II [design/analyse algorithms, and data structures]
- Math for CS I and II [algebra and statistics]
- And is a building block for more advanced units (4th year):
 - Applied Deep Learning (neural networks)
 - Information Processing & the Brain (ML and neuroscience)
 - Cloud Computing and Big Data (ML on the cloud)
 - Advanced Computer Vision (ML for vision)
 - Applied Data Science (ML and data management)
 - Individual Project (e.g., on applications or ML or advanced ML)

We will focus on the following textbook

Bishop, C. M., Pattern recognition and machine learning (2006). Available for free <u>here</u>.

With some sections from:

Edwin Simpson (based on slides by Rui Ponte Costa) COMS30035: Intro We will focus on the following textbook

 Bishop, C. M., Pattern recognition and machine learning (2006). Available for free <u>here</u>.

With some sections from:

Murphy, K., Machine learning a probabilistic perspective (2012). The book is also freely available <u>here</u>.

Edwin Simpson (based on slides by Rui Ponte Costa)

1. Part 1: Overview, ML concepts, revisiting regression, classification and neural networks

- 1. Part 1: Overview, ML concepts, revisiting regression, classification and neural networks
- 2. Part 2: Kernel methods (SVM), Probabilistic graphical models, (mixture models, EM), Dimensionality reduction (PCA, ICA)

- 1. Part 1: Overview, ML concepts, revisiting regression, classification and neural networks
- 2. Part 2: Kernel methods (SVM), Probabilistic graphical models, (mixture models, EM), Dimensionality reduction (PCA, ICA)
- 3. Part 3: Sequential data (HMM, LDS), Selecting and Combining Models (Ensembles)

- 1. Part 1: Overview, ML concepts, revisiting regression, classification and neural networks [» Edwin Simpson]
- 2. Part 2: Kernel methods (SVM), Probabilistic graphical models, (mixture models, EM), Dimensionality reduction (PCA, ICA)
- 3. Part 3: Sequential data (HMM, LDS), Selecting and Combining Models (Ensembles)

Edwin Simpson (based on slides by Rui Ponte Costa)

- 1. Part 1: Overview, ML concepts, revisiting regression, classification and neural networks [» Edwin Simpson]
- 2. Part 2: Kernel methods (SVM), Probabilistic graphical models, (mixture models, EM), Dimensionality reduction (PCA, ICA) [» James Cussens, unit director]
- 3. Part 3: Sequential data (HMM, LDS), Selecting and Combining Models (Ensembles)

Edwin Simpson (based on slides by Rui Ponte Costa)

- 1. Part 1: Overview, ML concepts, revisiting regression, classification and neural networks [» Edwin Simpson]
- 2. Part 2: Kernel methods (SVM), Probabilistic graphical models, (mixture models, EM), Dimensionality reduction (PCA, ICA) [» James Cussens, unit director]
- Part 3: Sequential data (HMM, LDS), Selecting and Combining Models (Ensembles) [» Edwin Simpson]

Edwin Simpson (based on slides by Rui Ponte Costa)