COMS30035, Machine learning: Revisiting regression

Edwin Simpson (based on slides by Rui Ponte Costa and Dima Damen)

Department of Computer Science, SCEEM University of Bristol

September 28, 2023

Textbooks

Chapter 3 of the Bishop book is directly relevant:

- Bishop, C. M., Pattern recognition and machine learning (2006). Available for free here.
- Note: this first part is a revision of should be covered in Data-driven Computer Science in your 2nd year; more complete (but old!) full lecture notes here.

Agenda

- Linear regression
- Nonlinear regression
- Probabilistic models
- Maximum likelihood estimation
[see old SPS slides; Chapter 3, Bishop]

Revisiting regression

- Goal: Finding a relationship between two variables (e.g. regress house value against number of rooms)
- Model: Linear relationship between house value and number of rooms?

Revisiting regression - deterministic model

Data: a set of data points $D=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{N}, y_{N}\right)\right\}$ where x_{i} is the number of rooms of house i and y_{i} the house value.

Task: build a model that can predict the house value from the number of rooms

Revisiting regression - deterministic model

Data: a set of data points $D=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{N}, y_{N}\right)\right\}$ where x_{i} is the number of rooms of house i and y_{i} the house value.

Task: build a model that can predict the house value from the number of rooms

Model Type: parametric; assumes a polynomial relationship between house value and number of rooms

Revisiting regression - deterministic model

 Data: a set of data points $D=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{N}, y_{N}\right)\right\}$ where x_{i} is the number of rooms of house i and y_{i} the house value.Task: build a model that can predict the house value from the number of rooms

Model Type: parametric; assumes a polynomial relationship between house value and number of rooms

Model Complexity: assume the relationship is linear house value $=a_{0}+a_{1} *$ rooms

$$
\begin{equation*}
y_{i}=a_{0}+a_{1} x_{i} \tag{1}
\end{equation*}
$$

Revisiting regression - deterministic model

 Data: a set of data points $D=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{N}, y_{N}\right)\right\}$ where x_{i} is the number of rooms of house i and y_{i} the house value.Task: build a model that can predict the house value from the number of rooms

Model Type: parametric; assumes a polynomial relationship between house value and number of rooms

Model Complexity: assume the relationship is linear house value $=a_{0}+a_{1} *$ rooms

$$
\begin{equation*}
y_{i}=a_{0}+a_{1} x_{i} \tag{1}
\end{equation*}
$$

Model Parameters: model has two parameters a_{0} and a_{1} which should be estimated.

- a_{0} is the y-intercept
- a_{1} is the slope of the line

Least Squares Solution - matrix form

- To find a solution to the parameters $\theta=\left\{a_{0}, a_{1}\right\}$ solve least squares problem which in matrix form, means to find $\mathbf{a}_{L S} ;{ }^{1}$
${ }^{1}\|\mathbf{A}\|^{2}=\sqrt{\sum \sum\left|a_{i j}\right|^{2}}$ denotes the Frobenius norm, defined as the square root of the sum of the absolute squares of its elements. For a detailed derivation see this derivation - p8

Least Squares Solution - matrix form

- To find a solution to the parameters $\theta=\left\{a_{0}, a_{1}\right\}$ solve least squares problem which in matrix form, means to find $\mathbf{a}_{L S} ;{ }^{1}$

$$
\begin{equation*}
\left\|\mathbf{y}-\mathbf{X} \mathbf{a}_{\angle S}\right\|^{2}=0 \tag{2}
\end{equation*}
$$

${ }^{1}\|\mathbf{A}\|^{2}=\sqrt{\sum \sum\left|a_{i j}\right|^{2}}$ denotes the Frobenius norm, defined as the square root of the sum of the absolute squares of its elements. For a detailed derivation see this derivation - p8

Least Squares Solution - matrix form

- To find a solution to the parameters $\theta=\left\{a_{0}, a_{1}\right\}$ solve least squares problem which in matrix form, means to find $\mathbf{a}_{L S} ;{ }^{1}$

$$
\begin{align*}
& \left\|\mathbf{y}-\mathbf{X} \mathbf{a}_{L S}\right\|^{2}=0 \tag{2}\\
& \mathbf{a}_{L S}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y} \tag{3}
\end{align*}
$$

${ }^{1}\|\mathbf{A}\|^{2}=\sqrt{\sum \sum\left|a_{i j}\right|^{2}}$ denotes the Frobenius norm, defined as the square root of the sum of the absolute squares of its elements. For a detailed derivation see this derivation - p8

Least Squares Solution - matrix form

- To find a solution to the parameters $\theta=\left\{a_{0}, a_{1}\right\}$ solve least squares problem which in matrix form, means to find $\mathbf{a}_{L S} ;{ }^{1}$

$$
\begin{align*}
& \left\|\mathbf{y}-\mathbf{X} \mathbf{a}_{L S}\right\|^{2}=0 \tag{2}\\
& \mathbf{a}_{L S}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y} \tag{3}
\end{align*}
$$

- Matrix formulation also allows least squares method to be extended to polynomial fitting
- For a polynomial of degree $p+1$ we use (note: $p>1$ gives nonineariregression)

$$
y_{i}=a_{0}+a_{1} x_{i}+a_{2} x_{i}^{2}+\cdots+a_{p} x_{i}^{p}
$$

${ }^{1}\|\mathbf{A}\|^{2}=\sqrt{\sum \sum\left|a_{i j}\right|^{2}}$ denotes the Frobenius norm, defined as the square root of the sum of the absolute squares of its elements. For a detailed derivation see this derivation - p8

Least Squares Solution

Example

Find the best least squares fit by a linear function to the data using $p=1$

x	-1	0	1	2
y	0	1	3	9

Least Squares Solution

Example

Find the best least squares fit by a linear function to the data using $p=1$

x	-1	0	1	2
y	0	1	3	9

$\mathbf{y}=\left[\begin{array}{l}0 \\ 1 \\ 3 \\ 9\end{array}\right]$

Least Squares Solution

Example

Find the best least squares fit by a linear function to the data using $p=1$

x	-1	0	1	2
y	0	1	3	9

$$
\mathbf{y}=\left[\begin{array}{l}
0 \\
1 \\
3 \\
9
\end{array}\right] \quad \mathbf{X}=\left[\begin{array}{cc}
1 & -1 \\
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right]
$$

Least Squares Solution

Example

Find the best least squares fit by a linear function to the data using $p=1$

x	-1	0	1	2
y	0	1	3	9

$$
\mathbf{y}=\left[\begin{array}{l}
0 \\
1 \\
3 \\
9
\end{array}\right] \quad \mathbf{X}=\left[\begin{array}{cc}
1 & -1 \\
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right] \quad \mathbf{X}^{T} \mathbf{X}=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
-1 & 0 & 1 & 2
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right]=\left[\begin{array}{ll}
4 & 2 \\
2 & 6
\end{array}\right]
$$

Least Squares Solution

Example

Find the best least squares fit by a linear function to the data using $p=1$

x	-1	0	1	2
y	0	1	3	9

$$
\mathbf{y}=\left[\begin{array}{l}
0 \\
1 \\
3 \\
9
\end{array}\right] \quad \mathbf{X}=\left[\begin{array}{cc}
1 & -1 \\
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right] \quad \mathbf{X}^{\top} \mathbf{X}=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
-1 & 0 & 1 & 2
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right]=\left[\begin{array}{ll}
4 & 2 \\
2 & 6
\end{array}\right]
$$

$$
\mathbf{a}_{L S}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}
$$

Least Squares Solution

Example

Find the best least squares fit by a linear function to the data using $p=1$

x	-1	0	1	2
y	0	1	3	9

$$
\mathbf{y}=\left[\begin{array}{l}
0 \\
1 \\
3 \\
9
\end{array}\right] \quad \mathbf{X}=\left[\begin{array}{cc}
1 & -1 \\
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right] \quad \mathbf{X}^{\top} \mathbf{X}=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
-1 & 0 & 1 & 2
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right]=\left[\begin{array}{ll}
4 & 2 \\
2 & 6
\end{array}\right]
$$

$$
\mathbf{a}_{L S}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}=\frac{1}{20}\left[\begin{array}{cc}
6 & -2 \\
-2 & 4
\end{array}\right]
$$

Least Squares Solution

Example

Find the best least squares fit by a linear function to the data using $p=1$

x	-1	0	1	2
y	0	1	3	9

$$
\mathbf{y}=\left[\begin{array}{l}
0 \\
1 \\
3 \\
9
\end{array}\right] \quad \mathbf{X}=\left[\begin{array}{cc}
1 & -1 \\
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right] \quad \mathbf{X}^{\top} \mathbf{X}=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
-1 & 0 & 1 & 2
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right]=\left[\begin{array}{ll}
4 & 2 \\
2 & 6
\end{array}\right]
$$

$$
\mathbf{a}_{L S}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}=\frac{1}{20}\left[\begin{array}{cc}
6 & -2 \\
-2 & 4
\end{array}\right]\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
-1 & 0 & 1 & 2
\end{array}\right]
$$

Least Squares Solution

Example

Find the best least squares fit by a linear function to the data using $p=1$

x	-1	0	1	2
y	0	1	3	9

$$
\begin{aligned}
& \mathbf{y}=\left[\begin{array}{l}
0 \\
1 \\
3 \\
9
\end{array}\right] \quad \mathbf{X}=\left[\begin{array}{cc}
1 & -1 \\
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right] \quad \mathbf{X}^{T} \mathbf{X}=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
-1 & 0 & 1 & 2
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right]=\left[\begin{array}{ll}
4 & 2 \\
2 & 6
\end{array}\right] \\
& \mathbf{a}_{L S}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}=\frac{1}{20}\left[\begin{array}{cc}
6 & -2 \\
-2 & 4
\end{array}\right]\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
-1 & 0 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
3 \\
9
\end{array}\right]
\end{aligned}
$$

Least Squares Solution

Example

Find the best least squares fit by a linear function to the data using $p=1$

x	-1	0	1	2
y	0	1	3	9

$$
\begin{aligned}
& \mathbf{y}=\left[\begin{array}{l}
0 \\
1 \\
3 \\
9
\end{array}\right] \quad \mathbf{X}=\left[\begin{array}{cc}
1 & -1 \\
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right] \quad \mathbf{X}^{\top} \mathbf{X}=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
-1 & 0 & 1 & 2
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right]=\left[\begin{array}{ll}
4 & 2 \\
2 & 6
\end{array}\right] \\
& \mathbf{a}_{\angle S}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}=\frac{1}{20}\left[\begin{array}{cc}
6 & -2 \\
-2 & 4
\end{array}\right]\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
-1 & 0 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
3 \\
9
\end{array}\right]=\left[\begin{array}{l}
1.8 \\
2.9
\end{array}\right]
\end{aligned}
$$

Least Squares Solution

Example

Find the best least squares fit by a linear function to the data using $p=1$

x	-1	0	1	2
y	0	1	3	9

$$
\begin{aligned}
& \mathbf{y}=\left[\begin{array}{l}
0 \\
1 \\
3 \\
9
\end{array}\right] \quad \mathbf{X}=\left[\begin{array}{cc}
1 & -1 \\
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right] \quad \mathbf{X}^{\top} \mathbf{X}=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
-1 & 0 & 1 & 2
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right]=\left[\begin{array}{ll}
4 & 2 \\
2 & 6
\end{array}\right] \\
& \mathbf{a}_{\angle S}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}=\frac{1}{20}\left[\begin{array}{cc}
6 & -2 \\
-2 & 4
\end{array}\right]\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
-1 & 0 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
3 \\
9
\end{array}\right]=\left[\begin{array}{l}
1.8 \\
2.9
\end{array}\right]
\end{aligned}
$$

$$
y=1.8+2.9 x
$$

Regression with probabilistic models

Probabilistic models are a core part of ML, as they allow us to also capture the uncertainty the model has about the data, which is critical for real world applications. For simplicity, lets drop a_{0} from the previous model and add a random variable ϵ that captures the uncertainty

$$
\text { house price }=a_{1} \times \text { number of rooms }+\epsilon
$$

[^0]
Regression with probabilistic models

Probabilistic models are a core part of ML, as they allow us to also capture the uncertainty the model has about the data, which is critical for real world applications. For simplicity, lets drop a_{0} from the previous model and add a random variable ϵ that captures the uncertainty

$$
\text { house price }=a_{1} \times \text { number of rooms }+\epsilon
$$

We can assume, for example, that ϵ is given by $\mathcal{N}\left(\mu=0, \sigma^{2}\right)$ which gives the likelihood

$$
p(\mathbf{y} \mid \mathbf{X}, \theta)=\prod_{i=1}^{N} p\left(\text { price }_{i} \mid \text { rooms }_{i}, \theta\right)=\prod_{i=1}^{N} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2} \frac{\left(\text { price }_{i}-a_{1} \text { rooms }_{j}\right)^{2}}{\sigma^{2}}}
$$

[^1]
Regression with probabilistic models

Probabilistic models are a core part of ML, as they allow us to also capture the uncertainty the model has about the data, which is critical for real world applications. For simplicity, lets drop a_{0} from the previous model and add a random variable ϵ that captures the uncertainty

$$
\text { house price }=a_{1} \times \text { number of rooms }+\epsilon
$$

We can assume, for example, that ϵ is given by $\mathcal{N}\left(\mu=0, \sigma^{2}\right)$ which gives the likelihood

$$
\left.p(\mathbf{y} \mid \mathbf{X}, \theta)=\prod_{i=1}^{N} p\left(\text { price }_{i} \mid \text { rooms }_{i}, \theta\right)=\prod_{i=1}^{N} \frac{1}{\sqrt{2 \pi} \sigma} e^{\left.-\frac{1}{2} \frac{\left(\text { price }_{i}-a_{1}\right. \text { rooms }}{j}\right)^{2}} \sigma^{2}\right)
$$

This model has two parameters: the slope a_{1} and variance σ^{2}

[^2]
Maximum Likelihood Estimation

- Similar to building deterministic models, probabilistic model parameters need to be tuned/trained
- Maximum-likelihood estimation (MLE) is a method of estimating the parameters of a probabilistic model.

[^3]
Maximum Likelihood Estimation

- Similar to building deterministic models, probabilistic model parameters need to be tuned/trained
- Maximum-likelihood estimation (MLE) is a method of estimating the parameters of a probabilistic model.
- Assume θ is a vector of all parameters of the probabilistic model. (e.g. $\left.\boldsymbol{\theta}=\left\{\boldsymbol{a}_{1}, \sigma\right\}\right)$.
- MLE is an extremum estimator ${ }^{3}$ obtained by maximising an objective function of θ

[^4]
Maximum Likelihood Estimation

Definition

Assume $f(\theta)$ is an objective function to be optimised (e.g. maximised), the arg max corresponds to the value of θ that attains the maximum value of the objective function f

Maximum Likelihood Estimation

Definition

Assume $f(\theta)$ is an objective function to be optimised (e.g. maximised), the arg max corresponds to the value of θ that attains the maximum value of the objective function f

$$
\hat{\theta}=\arg \max _{\theta} f(\theta)
$$

Maximum Likelihood Estimation

Definition

Assume $f(\theta)$ is an objective function to be optimised (e.g. maximised), the arg max corresponds to the value of θ that attains the maximum value of the objective function f

$$
\hat{\theta}=\arg \max _{\theta} f(\theta)
$$

- Tuning the parameter is then equal to finding the maximum argument arg max

Maximum Likelihood Estimation - General

- Maximum Likelihood Estimation (MLE) is a common method for solving such problems

$$
\begin{aligned}
\theta_{M L E} & =\arg \max _{\theta} p(D \mid \theta) \\
& =\arg \max _{\theta} \ln p(D \mid \theta) \\
& =\arg \min _{\theta}-\ln p(D \mid \theta)
\end{aligned}
$$

Maximum Likelihood Estimation - General

- Maximum Likelihood Estimation (MLE) is a common method for solving such problems

$$
\begin{aligned}
\theta_{M L E} & =\arg \max _{\theta} p(D \mid \theta) \\
& =\arg \max _{\theta} \ln p(D \mid \theta) \\
& =\arg \min _{\theta}-\ln p(D \mid \theta)
\end{aligned}
$$

MLE Recipe

Maximum Likelihood Estimation - General

- Maximum Likelihood Estimation (MLE) is a common method for solving such problems

$$
\begin{aligned}
\theta_{M L E} & =\arg \max _{\theta} p(D \mid \theta) \\
& =\arg \max _{\theta} \ln p(D \mid \theta) \\
& =\arg \min _{\theta}-\ln p(D \mid \theta)
\end{aligned}
$$

MLE Recipe

1. Determine θ, D and expression for likelihood $p(D \mid \theta)$

Maximum Likelihood Estimation - General

- Maximum Likelihood Estimation (MLE) is a common method for solving such problems

$$
\begin{aligned}
\theta_{M L E} & =\arg \max _{\theta} p(D \mid \theta) \\
& =\arg \max _{\theta} \ln p(D \mid \theta) \\
& =\arg \min _{\theta}-\ln p(D \mid \theta)
\end{aligned}
$$

MLE Recipe

1. Determine θ, D and expression for likelihood $p(D \mid \theta)$
2. Take the natural logarithm of the likelihood

Maximum Likelihood Estimation - General

- Maximum Likelihood Estimation (MLE) is a common method for solving such problems

$$
\begin{aligned}
\theta_{M L E} & =\arg \max _{\theta} p(D \mid \theta) \\
& =\arg \max _{\theta} \ln p(D \mid \theta) \\
& =\arg \min _{\theta}-\ln p(D \mid \theta)
\end{aligned}
$$

MLE Recipe

1. Determine θ, D and expression for likelihood $p(D \mid \theta)$
2. Take the natural logarithm of the likelihood
3. Take the derivative of $\ln p(D \mid \theta)$ w.r.t. θ. If θ is a multi-dimensional vector, take partial derivatives

Maximum Likelihood Estimation - General

- Maximum Likelihood Estimation (MLE) is a common method for solving such problems

$$
\begin{aligned}
\theta_{M L E} & =\arg \max _{\theta} p(D \mid \theta) \\
& =\arg \max _{\theta} \ln p(D \mid \theta) \\
& =\arg \min _{\theta}-\ln p(D \mid \theta)
\end{aligned}
$$

MLE Recipe

1. Determine θ, D and expression for likelihood $p(D \mid \theta)$
2. Take the natural logarithm of the likelihood
3. Take the derivative of $\ln p(D \mid \theta)$ w.r.t. θ. If θ is a multi-dimensional vector, take partial derivatives
4. Set derivative(s) to 0 and solve for θ

Data Modelling - Deterministic vs Probabilistic

- Probabilistic Models can tell us more

[^5]
Data Modelling - Deterministic vs Probabilistic

- Probabilistic Models can tell us more
- We could use the same MLE recipe to find $\sigma_{M L}$. This would tell us how uncertain our model is about the data D.

[^6]
Data Modelling - Deterministic vs Probabilistic

- Probabilistic Models can tell us more
- We could use the same MLE recipe to find $\sigma_{M L}$. This would tell us how uncertain our model is about the data D.
- For example: if we apply this method to two datasets (D_{1} and D_{2}) what would the parameters $\theta=\left\{a_{1}, \sigma\right\}$ be?

[^7]
Data Modelling - Deterministic vs Probabilistic

- Probabilistic Models can tell us more
- We could use the same MLE recipe to find $\sigma_{M L}$. This would tell us how uncertain our model is about the data D.
- For example: if we apply this method to two datasets (D_{1} and D_{2}) what would the parameters $\theta=\left\{a_{1}, \sigma\right\}$ be?

[^8]
Data Modelling - Deterministic vs Probabilistic

- Probabilistic Models can tell us more
- We could use the same MLE recipe to find $\sigma_{M L}$. This would tell us how uncertain our model is about the data D.
- For example: if we apply this method to two datasets (D_{1} and D_{2}) what would the parameters $\theta=\left\{a_{1}, \sigma\right\}$ be?

[^9]
Quiz time!

Go to Blackboard unit page » Quizzes » Week 1, Revisiting Regression

[Should take you less than 5 minutes]

[^0]: ${ }^{2}$ Note that here $\mu=a_{0}$ which, for simplicity, we assume to be zero.

[^1]: ${ }^{2}$ Note that here $\mu=a_{0}$ which, for simplicity, we assume to be zero.

[^2]: ${ }^{2}$ Note that here $\mu=a_{0}$ which, for simplicity, we assume to be zero.

[^3]: $3_{\text {"Extremum estimators are a wide class of estimators for parametric models that are calculated through maximization (or minimization) of a }}$ certain objective function, which depends on the data." wikipedia.org

[^4]: $3_{\text {"Extremum estimators are a wide class of estimators for parametric models that are calculated through maximization (or minimization) of a }}$ certain objective function, which depends on the data." wikipedia.org

[^5]: ${ }^{4}$ The uncertainty (σ) is represented by the light green bar in the plots. Test it yourself.

[^6]: ${ }^{4}$ The uncertainty (σ) is represented by the light green bar in the plots. Test it yourself.

[^7]: ${ }^{4}$ The uncertainty (σ) is represented by the light green bar in the plots. Test it yourself.

[^8]: ${ }^{4}$ The uncertainty (σ) is represented by the light green bar in the plots. Test it yourself.

[^9]: ${ }^{4}$ The uncertainty (σ) is represented by the light green bar in the plots. Test it yourself.

