
COMS30035, Machine learning:
Classification and Neural Networks

Edwin Simpson (adapted from slides by Rui Ponte Costa)

Department of Computer Science, SCEEM
University of Bristol

October 3, 2023

Edwin Simpson (adapted from slides by Rui Ponte Costa)

COMS30035: Classification and nnets

Textbooks

We will follow parts of the Chapter 4 and 5 of the Bishop book:
I Bishop, C. M., Pattern recognition and machine learning (2006).

Available for free here.

Edwin Simpson (adapted from slides by Rui Ponte Costa)

COMS30035: Classification and nnets

https://www.microsoft.com/en-us/research/people/cmbishop/

Agenda

I Discriminant functions
I Logistic regression
I Perceptron
I Neural networks (multi-layer perceptron)

I Architecture
I The backpropagation algorithm
I Gradient descent

See: [Chapter 5, Bishop]

Edwin Simpson (adapted from slides by Rui Ponte Costa)

COMS30035: Classification and nnets

Classification

I It is the classical example of supervised learning

I Goal: Classify input data into one of K classes

I Model: Discriminant function:

I A function that takes an input vector x and assigns it to class Ck . For
simplicity we will focus on K = 2 and will first study linear functions (see
Bishop for the general cases).

Edwin Simpson (adapted from slides by Rui Ponte Costa)

COMS30035: Classification and nnets

Classification

I It is the classical example of supervised learning

I Goal: Classify input data into one of K classes

I Model: Discriminant function:

I A function that takes an input vector x and assigns it to class Ck . For
simplicity we will focus on K = 2 and will first study linear functions (see
Bishop for the general cases).

Edwin Simpson (adapted from slides by Rui Ponte Costa)

COMS30035: Classification and nnets

Linear discriminant function

I The simplest linear discriminant (LD) is y(x) = w0 + wT x
I where y is used to predicted class Ck , x is the input vector (feature

values)
I w0 is a scalar, which we call bias
I wT is our vector of parameters, which we call weights

I This looks like linear regression! Except the next step...
I For K = 2: An input vector x is assigned to class C1 if y(x) ≥ 0 and to

class C2 otherwise.
I Optimisation: least-squares (as for regression) 1, where we want to

minimise the cost or error function:

E =
1
2

N∑
n=1

(wT xn + w0 − tn)2 where tn are the targets/labels (e.g. t1 = C1).

1See Bishop p184 and p190.

Edwin Simpson (adapted from slides by Rui Ponte Costa)

COMS30035: Classification and nnets

Linear discriminant function

I The simplest linear discriminant (LD) is y(x) = w0 + wT x
I where y is used to predicted class Ck , x is the input vector (feature

values)
I w0 is a scalar, which we call bias
I wT is our vector of parameters, which we call weights

I This looks like linear regression! Except the next step...

I For K = 2: An input vector x is assigned to class C1 if y(x) ≥ 0 and to
class C2 otherwise.

I Optimisation: least-squares (as for regression) 1, where we want to
minimise the cost or error function:

E =
1
2

N∑
n=1

(wT xn + w0 − tn)2 where tn are the targets/labels (e.g. t1 = C1).

1See Bishop p184 and p190.

Edwin Simpson (adapted from slides by Rui Ponte Costa)

COMS30035: Classification and nnets

Linear discriminant function

I The simplest linear discriminant (LD) is y(x) = w0 + wT x
I where y is used to predicted class Ck , x is the input vector (feature

values)
I w0 is a scalar, which we call bias
I wT is our vector of parameters, which we call weights

I This looks like linear regression! Except the next step...
I For K = 2: An input vector x is assigned to class C1 if y(x) ≥ 0 and to

class C2 otherwise.

I Optimisation: least-squares (as for regression) 1, where we want to
minimise the cost or error function:

E =
1
2

N∑
n=1

(wT xn + w0 − tn)2 where tn are the targets/labels (e.g. t1 = C1).

1See Bishop p184 and p190.

Edwin Simpson (adapted from slides by Rui Ponte Costa)

COMS30035: Classification and nnets

Linear discriminant function

I The simplest linear discriminant (LD) is y(x) = w0 + wT x
I where y is used to predicted class Ck , x is the input vector (feature

values)
I w0 is a scalar, which we call bias
I wT is our vector of parameters, which we call weights

I This looks like linear regression! Except the next step...
I For K = 2: An input vector x is assigned to class C1 if y(x) ≥ 0 and to

class C2 otherwise.
I Optimisation: least-squares (as for regression) 1, where we want to

minimise the cost or error function:

E =
1
2

N∑
n=1

(wT xn + w0 − tn)2 where tn are the targets/labels (e.g. t1 = C1).

1See Bishop p184 and p190.

Edwin Simpson (adapted from slides by Rui Ponte Costa)

COMS30035: Classification and nnets

LD and linear separability

Example

Linear separability is when two sets of points are separable by a line. We
generated two sets of points using two Gaussians to illustrate this point,
which can easily be fit by a LD. A decision boundary is the boundary that
separates the two given classes, which our models will try to find.

Edwin Simpson (adapted from slides by Rui Ponte Costa)

COMS30035: Classification and nnets

Linear separability vs nonlinear separability

Example

Which datasets are and are not linearly separable2?

Only the first dataset is linearly separable!

2Example from Sklearn here.

Edwin Simpson (adapted from slides by Rui Ponte Costa)

COMS30035: Classification and nnets

https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html

Linear separability vs nonlinear separability

Example

Which datasets are and are not linearly separable2?

Only the first dataset is linearly separable!

2Example from Sklearn here.

Edwin Simpson (adapted from slides by Rui Ponte Costa)

COMS30035: Classification and nnets

https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html

Linear discriminant

Example

Using sklearn we fitted a LD to the data:

As expected, the LD model only does a good job in finding a good
separation in the first dataset.

Edwin Simpson (adapted from slides by Rui Ponte Costa)

COMS30035: Classification and nnets

Logistic regression

I We use a logistic function to obtain the probability of class Ck :

y(x) = σ(wT x) where σ denotes the logistic sigmoid function
(s-shaped), for example:

I such that when y → 0 we choose class 2 and y → 1 class 1.
I Taking a probabilistic view:

p(C1|x) = y(x), and p(C2|x) = 1− p(C1|x).

Edwin Simpson (adapted from slides by Rui Ponte Costa)

COMS30035: Classification and nnets

Logistic regression

I We use a logistic function to obtain the probability of class Ck :

y(x) = σ(wT x) where σ denotes the logistic sigmoid function
(s-shaped), for example:

I such that when y → 0 we choose class 2 and y → 1 class 1.
I Taking a probabilistic view:

p(C1|x) = y(x), and p(C2|x) = 1− p(C1|x).

Edwin Simpson (adapted from slides by Rui Ponte Costa)

COMS30035: Classification and nnets

Logistic regression – maximum likelihood estimation
Follow MLE recipe:

1. Define likelihood: For a dataset {xn, tn}, where the targets tn ∈ {0,1}

we have p(t |x ,w) =
N∏

n=1

y tn
n (1− yn)

1−tn where yn = p(C1|xn). 3

2. Take negative logarithm of the likelihood 4:

−ln p(t |x ,w) = −
N∑

n=1

{tnln yn + (1− tn)ln(1− yn)}

3. Calculate the derivative w.r.t. the parameters w :5

d ln p(t|x,w)
dw =

N∑
n=1

(yn − tn)xn

4. Now we can use Eq. above to directly update w using the data x .

3The exponent selects the probability of the target class (i.e. if tn = 1 we get yn; if tn = 0
we get 1 − yn).

4Note that we used the logarithm product and power rule.
5This solution makes sense since we want to optimise the difference between the model

output y and the desired targets t .

Edwin Simpson (adapted from slides by Rui Ponte Costa)

COMS30035: Classification and nnets

Logistic regression – maximum likelihood estimation
Follow MLE recipe:

1. Define likelihood: For a dataset {xn, tn}, where the targets tn ∈ {0,1}

we have p(t |x ,w) =
N∏

n=1

y tn
n (1− yn)

1−tn where yn = p(C1|xn). 3

2. Take negative logarithm of the likelihood 4:

−ln p(t |x ,w) = −
N∑

n=1

{tnln yn + (1− tn)ln(1− yn)}

3. Calculate the derivative w.r.t. the parameters w :5

d ln p(t|x,w)
dw =

N∑
n=1

(yn − tn)xn

4. Now we can use Eq. above to directly update w using the data x .

3The exponent selects the probability of the target class (i.e. if tn = 1 we get yn; if tn = 0
we get 1 − yn).

4Note that we used the logarithm product and power rule.
5This solution makes sense since we want to optimise the difference between the model

output y and the desired targets t .

Edwin Simpson (adapted from slides by Rui Ponte Costa)

COMS30035: Classification and nnets

Logistic regression – maximum likelihood estimation
Follow MLE recipe:

1. Define likelihood: For a dataset {xn, tn}, where the targets tn ∈ {0,1}

we have p(t |x ,w) =
N∏

n=1

y tn
n (1− yn)

1−tn where yn = p(C1|xn). 3

2. Take negative logarithm of the likelihood 4:

−ln p(t |x ,w) = −
N∑

n=1

{tnln yn + (1− tn)ln(1− yn)}

3. Calculate the derivative w.r.t. the parameters w :5

d ln p(t|x,w)
dw =

N∑
n=1

(yn − tn)xn

4. Now we can use Eq. above to directly update w using the data x .

3The exponent selects the probability of the target class (i.e. if tn = 1 we get yn; if tn = 0
we get 1 − yn).

4Note that we used the logarithm product and power rule.
5This solution makes sense since we want to optimise the difference between the model

output y and the desired targets t .

Edwin Simpson (adapted from slides by Rui Ponte Costa)

COMS30035: Classification and nnets

Logistic regression – maximum likelihood estimation
Follow MLE recipe:

1. Define likelihood: For a dataset {xn, tn}, where the targets tn ∈ {0,1}

we have p(t |x ,w) =
N∏

n=1

y tn
n (1− yn)

1−tn where yn = p(C1|xn). 3

2. Take negative logarithm of the likelihood 4:

−ln p(t |x ,w) = −
N∑

n=1

{tnln yn + (1− tn)ln(1− yn)}

3. Calculate the derivative w.r.t. the parameters w :5

d ln p(t|x,w)
dw =

N∑
n=1

(yn − tn)xn

4. Now we can use Eq. above to directly update w using the data x .
3The exponent selects the probability of the target class (i.e. if tn = 1 we get yn; if tn = 0

we get 1 − yn).
4Note that we used the logarithm product and power rule.
5This solution makes sense since we want to optimise the difference between the model

output y and the desired targets t .

Edwin Simpson (adapted from slides by Rui Ponte Costa)

COMS30035: Classification and nnets

MLE using Gradient Descent

I Start with random weight values
I We want to adjust each weight w to minimise negative log likelihood:

move downhill to the minimum

I The derivative represents the slope: d ln p(t|x,w)
dw =

N∑
n=1

(yn − tn)xn

I Increase or decrease w by a small amount in the downward direction

Edwin Simpson (adapted from slides by Rui Ponte Costa)

COMS30035: Classification and nnets

Logistic regression – maximum likelihood estimation

More details on calculating the derivative:

1. From here −ln p(t |x ,w) = −
N∑

n=1

{tnln yn + (1− tn)ln(1− yn)}

2. We get
N∑

n=1

{− tn
yn

+ (1−tn)
1−yn

}{yn(1− yn)}xn
6

3. The above simplifies to
N∑

n=1

{−tn(1− yn) + (1− tn)yn}xn

4. And in turn to
N∑

n=1

{yn − tn}xn
7

6We used the chain rule and d ln(x) = 1/x . We also used the derivative of the sigmoid
dyn = y(1 − yn).

7You can find the full derivation here.

Edwin Simpson (adapted from slides by Rui Ponte Costa)

COMS30035: Classification and nnets

https://uob-coms30035.github.io/Material/CrossEntropy.html

Logistic regression – maximum likelihood estimation

More details on calculating the derivative:

1. From here −ln p(t |x ,w) = −
N∑

n=1

{tnln yn + (1− tn)ln(1− yn)}

2. We get
N∑

n=1

{− tn
yn

+ (1−tn)
1−yn

}{yn(1− yn)}xn
6

3. The above simplifies to
N∑

n=1

{−tn(1− yn) + (1− tn)yn}xn

4. And in turn to
N∑

n=1

{yn − tn}xn
7

6We used the chain rule and d ln(x) = 1/x . We also used the derivative of the sigmoid
dyn = y(1 − yn).

7You can find the full derivation here.

Edwin Simpson (adapted from slides by Rui Ponte Costa)

COMS30035: Classification and nnets

https://uob-coms30035.github.io/Material/CrossEntropy.html

Logistic regression – maximum likelihood estimation

More details on calculating the derivative:

1. From here −ln p(t |x ,w) = −
N∑

n=1

{tnln yn + (1− tn)ln(1− yn)}

2. We get
N∑

n=1

{− tn
yn

+ (1−tn)
1−yn

}{yn(1− yn)}xn
6

3. The above simplifies to
N∑

n=1

{−tn(1− yn) + (1− tn)yn}xn

4. And in turn to
N∑

n=1

{yn − tn}xn
7

6We used the chain rule and d ln(x) = 1/x . We also used the derivative of the sigmoid
dyn = y(1 − yn).

7You can find the full derivation here.

Edwin Simpson (adapted from slides by Rui Ponte Costa)

COMS30035: Classification and nnets

https://uob-coms30035.github.io/Material/CrossEntropy.html

Logistic regression – maximum likelihood estimation

More details on calculating the derivative:

1. From here −ln p(t |x ,w) = −
N∑

n=1

{tnln yn + (1− tn)ln(1− yn)}

2. We get
N∑

n=1

{− tn
yn

+ (1−tn)
1−yn

}{yn(1− yn)}xn
6

3. The above simplifies to
N∑

n=1

{−tn(1− yn) + (1− tn)yn}xn

4. And in turn to
N∑

n=1

{yn − tn}xn
7

6We used the chain rule and d ln(x) = 1/x . We also used the derivative of the sigmoid
dyn = y(1 − yn).

7You can find the full derivation here.

Edwin Simpson (adapted from slides by Rui Ponte Costa)

COMS30035: Classification and nnets

https://uob-coms30035.github.io/Material/CrossEntropy.html

Logistic regression

Example

Using sklearn we fitted a logistic regression classifier to the data:

As you can see the results are very similar to LD, but because of probabilistic
formulation we have an explicit probability of belonging to one or the other class
(not shown); this can be very useful in real-world applications (e.g. self-driving cars
or cancer detection).

Edwin Simpson (adapted from slides by Rui Ponte Costa)

COMS30035: Classification and nnets

Perceptron – a simplified neural network
I It is the very beginning of neural network models in ML!

I It is directly inspired by how neurons process information:

Synaptic
weightInput

Neuron

Output

I It is an example of a linear discriminant model given by
y(x) = f (wTφ(x))

with a nonlinear activation function f (a) =

{
+1, a ≥ 0
−1, a < 0

I Here the target t = {+1,−1}.

I And we aim to mimimise the following error −
N∑

n=1

wTφntn 8

8Intuitively we want to improve our chances of having tn = yn = −1 or tn = yn = 1, which
will both decrease our error function.

Edwin Simpson (adapted from slides by Rui Ponte Costa)

COMS30035: Classification and nnets

Perceptron – a simplified neural network
I It is the very beginning of neural network models in ML!

I It is directly inspired by how neurons process information:

Synaptic
weightInput

Neuron

Output

I It is an example of a linear discriminant model given by
y(x) = f (wTφ(x))

with a nonlinear activation function f (a) =

{
+1, a ≥ 0
−1, a < 0

I Here the target t = {+1,−1}.

I And we aim to mimimise the following error −
N∑

n=1

wTφntn 8

8Intuitively we want to improve our chances of having tn = yn = −1 or tn = yn = 1, which
will both decrease our error function.

Edwin Simpson (adapted from slides by Rui Ponte Costa)

COMS30035: Classification and nnets

Perceptron – a simplified neural network
I It is the very beginning of neural network models in ML!

I It is directly inspired by how neurons process information:

Synaptic
weightInput

Neuron

Output

I It is an example of a linear discriminant model given by
y(x) = f (wTφ(x))

with a nonlinear activation function f (a) =

{
+1, a ≥ 0
−1, a < 0

I Here the target t = {+1,−1}.

I And we aim to mimimise the following error −
N∑

n=1

wTφntn 8

8Intuitively we want to improve our chances of having tn = yn = −1 or tn = yn = 1, which
will both decrease our error function.

Edwin Simpson (adapted from slides by Rui Ponte Costa)

COMS30035: Classification and nnets

Perceptron – a simplified neural network

Example

The Perceptron of Rosenblatt (1962)
Perceptrons started the journey to the current deep learning revolution!
Frank Rosenblatt used IBM and special-purpose hardware for a parallel
implementation of perceptron learning.
Marvin Minksy, showed that such models could only learn linearly
separable problems.
However, this limitation is only true in the case of single layers!

source: Bishop p193.

Edwin Simpson (adapted from slides by Rui Ponte Costa)

COMS30035: Classification and nnets

Neural networks

From a single layer perceptron:

Synaptic
weightInput

Neuron

Output

Edwin Simpson (adapted from slides by Rui Ponte Costa)

COMS30035: Classification and nnets

Neural networks
To a Multiple Layer Perceptron (MLP) 9:

weights

Input
layer

Output
layer

Hidden
layer

weights

9Although, we call it perceptron, it typically uses logistic sigmoid activation functions
(continous nonlinearities), instead of step-wise discontinous nonlinearities.

Edwin Simpson (adapted from slides by Rui Ponte Costa)

COMS30035: Classification and nnets

Neural networks

I Neural networks are at heart composite functions of linear-nonlinear
functions.

I Deep learning10 refers to neural networks (or MLPs) with more than 1
hidden layer

I They can be applied in any form of learning, but we will focus on
supervised learning and classification in particular

I MLP recipe 11:
I Define architecture (e.g. how many hidden layers and neurons) 12

I Define cost function (e.g. mean squared error)
I Optimise network using backprop:

1. Forward pass – calculate activations; generate yk
2. Calculate error/cost function
3. Backward pass – use backprop to update parameters

10If you would like to learn more take our Applied Deep Learning unit in your 4th year.
11Here we focus on simple feedforward nnets but the recipe is the same for any neural

network.
12Note that this makes them parametric models.

Edwin Simpson (adapted from slides by Rui Ponte Costa)

COMS30035: Classification and nnets

Neural networks

I Neural networks are at heart composite functions of linear-nonlinear
functions.

I Deep learning10 refers to neural networks (or MLPs) with more than 1
hidden layer

I They can be applied in any form of learning, but we will focus on
supervised learning and classification in particular

I MLP recipe 11:
I Define architecture (e.g. how many hidden layers and neurons) 12

I Define cost function (e.g. mean squared error)
I Optimise network using backprop:

1. Forward pass – calculate activations; generate yk
2. Calculate error/cost function
3. Backward pass – use backprop to update parameters

10If you would like to learn more take our Applied Deep Learning unit in your 4th year.
11Here we focus on simple feedforward nnets but the recipe is the same for any neural

network.
12Note that this makes them parametric models.

Edwin Simpson (adapted from slides by Rui Ponte Costa)

COMS30035: Classification and nnets

Neural networks – forward pass step-by-step

1. Calculate activations of the hidden layer h: aj =
D∑

i=1

w (h)
ji xi + w (h)

j0 [linear]

2. Pass it through a nonlinear function: zj = σ(aj) [nonlinear13]

3. Calculate activations of the output layer o: ak =
hiddensize∑

j=1

w (o)
kj zj + w (o)

k0 [linear]

4. Compute predictions using a sigmoid: yk = σ(ak) [nonlinear14]

5. All together: yk = σ

(
D∑

i=1

wkj σ

(
D∑

i=1

wjix
(h)
i + w (h)

j0

)
+ w (o)

k0

)

13In MLP we typically use sigmoid functions.
14For classification problems we use a sigmoid at the output, where each output neuron

codes for one class.

Edwin Simpson (adapted from slides by Rui Ponte Costa)

COMS30035: Classification and nnets

Neural networks – forward pass step-by-step

1. Calculate activations of the hidden layer h: aj =
D∑

i=1

w (h)
ji xi + w (h)

j0 [linear]

2. Pass it through a nonlinear function: zj = σ(aj) [nonlinear13]

3. Calculate activations of the output layer o: ak =
hiddensize∑

j=1

w (o)
kj zj + w (o)

k0 [linear]

4. Compute predictions using a sigmoid: yk = σ(ak) [nonlinear14]

5. All together: yk = σ

(
D∑

i=1

wkj σ

(
D∑

i=1

wjix
(h)
i + w (h)

j0

)
+ w (o)

k0

)

13In MLP we typically use sigmoid functions.
14For classification problems we use a sigmoid at the output, where each output neuron

codes for one class.

Edwin Simpson (adapted from slides by Rui Ponte Costa)

COMS30035: Classification and nnets

Neural networks – forward pass step-by-step

1. Calculate activations of the hidden layer h: aj =
D∑

i=1

w (h)
ji xi + w (h)

j0 [linear]

2. Pass it through a nonlinear function: zj = σ(aj) [nonlinear13]

3. Calculate activations of the output layer o: ak =
hiddensize∑

j=1

w (o)
kj zj + w (o)

k0 [linear]

4. Compute predictions using a sigmoid: yk = σ(ak) [nonlinear14]

5. All together: yk = σ

(
D∑

i=1

wkj σ

(
D∑

i=1

wjix
(h)
i + w (h)

j0

)
+ w (o)

k0

)

13In MLP we typically use sigmoid functions.
14For classification problems we use a sigmoid at the output, where each output neuron

codes for one class.

Edwin Simpson (adapted from slides by Rui Ponte Costa)

COMS30035: Classification and nnets

Neural networks – backward pass
We now need to optimise our weights, and as before we use derivatives to find a
solution. Effectively backpropagating the output error signal across the network –
backpropagation algorithm.

weights

Input
layer

Output
layer

Hidden
layer

weights

Backpropagate Error
using chain rule

Edwin Simpson (adapted from slides by Rui Ponte Costa)

COMS30035: Classification and nnets

Neural networks – backward pass

We now need to optimise our weights, and as before we use derivatives to find a
solution. Effectively backpropagating the output error signal across the network –
backpropagation algorithm.

1. Compute the error (or cost) function: e.g.: E =
1
2

N∑
n=1

(y(xn,w) − tn)2

2. Use the chain rule to compute the gradients w.r.t. w , dE
dw

3. For the output weights wkj we get:
∂E
∂wkj

=
∂E
∂yk

∂yk

∂ak

∂ak

∂wkj
= σ′(yn − tn)zj

15

4. Whereas for the input weights wji we get:
∂E
∂wji

=
∂E
∂yk

∂yk

∂ak

∂ak

∂zj

∂zj

∂aj

∂aj

∂wji
= σ′(yn − tn)wT

kjσ
′xi

16

15σ′ denotes the derivative of the sigmoid activation function.
16Note that the updates for the bias terms w0 do not depend on the activity of the previous

layer zj and xi .

Edwin Simpson (adapted from slides by Rui Ponte Costa)

COMS30035: Classification and nnets

Neural networks – backward pass

We now need to optimise our weights, and as before we use derivatives to find a
solution. Effectively backpropagating the output error signal across the network –
backpropagation algorithm.

1. Compute the error (or cost) function: e.g.: E =
1
2

N∑
n=1

(y(xn,w) − tn)2

2. Use the chain rule to compute the gradients w.r.t. w , dE
dw

3. For the output weights wkj we get:
∂E
∂wkj

=
∂E
∂yk

∂yk

∂ak

∂ak

∂wkj
= σ′(yn − tn)zj

15

4. Whereas for the input weights wji we get:
∂E
∂wji

=
∂E
∂yk

∂yk

∂ak

∂ak

∂zj

∂zj

∂aj

∂aj

∂wji
= σ′(yn − tn)wT

kjσ
′xi

16

15σ′ denotes the derivative of the sigmoid activation function.
16Note that the updates for the bias terms w0 do not depend on the activity of the previous

layer zj and xi .

Edwin Simpson (adapted from slides by Rui Ponte Costa)

COMS30035: Classification and nnets

Neural networks – backward pass

We now need to optimise our weights, and as before we use derivatives to find a
solution. Effectively backpropagating the output error signal across the network –
backpropagation algorithm.

1. Compute the error (or cost) function: e.g.: E =
1
2

N∑
n=1

(y(xn,w) − tn)2

2. Use the chain rule to compute the gradients w.r.t. w , dE
dw

3. For the output weights wkj we get:
∂E
∂wkj

=
∂E
∂yk

∂yk

∂ak

∂ak

∂wkj
= σ′(yn − tn)zj

15

4. Whereas for the input weights wji we get:
∂E
∂wji

=
∂E
∂yk

∂yk

∂ak

∂ak

∂zj

∂zj

∂aj

∂aj

∂wji
= σ′(yn − tn)wT

kjσ
′xi

16

15σ′ denotes the derivative of the sigmoid activation function.
16Note that the updates for the bias terms w0 do not depend on the activity of the previous

layer zj and xi .

Edwin Simpson (adapted from slides by Rui Ponte Costa)

COMS30035: Classification and nnets

Neural networks – gradient descent 18

In many ML methods is common to iteratively update the parameters by
descending the gradient.

17

In our neural network this means to update the weights using:
I wji = wji − ∆wji , where ∆wji = σ′(yn − tn)wT

kjσ
′xi

I wkj = wkj − ∆wkj , where ∆wkj = σ′(yn − tn)zj

I This is often done in mini-batches – using a small number of samples to
compute ∆w .

17Figure from https://mc.ai/an-introduction-to-gradient-descent-2/
18 Its called descent because we are minimising the cost function, so descending on the function landscape, which can be quite hilly!

Edwin Simpson (adapted from slides by Rui Ponte Costa)

COMS30035: Classification and nnets

https://mc.ai/an-introduction-to-gradient-descent-2/

Neural networks – gradient descent 18

In many ML methods is common to iteratively update the parameters by
descending the gradient.

17

In our neural network this means to update the weights using:
I wji = wji − ∆wji , where ∆wji = σ′(yn − tn)wT

kjσ
′xi

I wkj = wkj − ∆wkj , where ∆wkj = σ′(yn − tn)zj

I This is often done in mini-batches – using a small number of samples to
compute ∆w .

17Figure from https://mc.ai/an-introduction-to-gradient-descent-2/
18 Its called descent because we are minimising the cost function, so descending on the function landscape, which can be quite hilly!

Edwin Simpson (adapted from slides by Rui Ponte Costa)

COMS30035: Classification and nnets

https://mc.ai/an-introduction-to-gradient-descent-2/

Neural networks

Example

Using sklearn we fitted a MLP classifier to the data:

An MLP with one hidden layer can perform well in nonlinear classification problems.
However, because MLPs are highly flexible they can easily overfit.
Solutions: early stopping (stop when test performance starts decreasing) and
regularisation methods such as dropout (randomly turn off units during training).

Edwin Simpson (adapted from slides by Rui Ponte Costa)

COMS30035: Classification and nnets

Classification methods – overall comparison

Edwin Simpson (adapted from slides by Rui Ponte Costa)

COMS30035: Classification and nnets

Classification methods – overall comparison [including

methods from the upcoming lectures]

Edwin Simpson (adapted from slides by Rui Ponte Costa)

COMS30035: Classification and nnets

Tasks

I Post questions Teams > QA channel or bring them to the next lecture

I Next lab (Week 2): Neural nets and SVMs
1. See link to lab 2 on BB

Edwin Simpson (adapted from slides by Rui Ponte Costa)

COMS30035: Classification and nnets

Tasks

I Post questions Teams > QA channel or bring them to the next lecture

I Next lab (Week 2): Neural nets and SVMs
1. See link to lab 2 on BB

Edwin Simpson (adapted from slides by Rui Ponte Costa)

COMS30035: Classification and nnets

Quiz and video time!

Watch this very cool video about the perceptron 19.

Go to Blackboard unit page » Quizzes » Week 1 »
Classification and neural networks

[Should take you less than 5 minutes]

19Note the comment at the end – it underlies all the recent successes using deep learning!

Edwin Simpson (adapted from slides by Rui Ponte Costa)

COMS30035: Classification and nnets

https://www.youtube.com/watch?v=cNxadbrN_aI

